Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/knet
/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py
_base_ = 'knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py' | |
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth' # noqa | |
# model settings | |
crop_size = (640, 640) | |
data_preprocessor = dict( | |
type='SegDataPreProcessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_val=0, | |
size=crop_size, | |
seg_pad_val=255) | |
model = dict( | |
data_preprocessor=data_preprocessor, | |
pretrained=checkpoint_file, | |
backbone=dict( | |
embed_dims=192, | |
depths=[2, 2, 18, 2], | |
num_heads=[6, 12, 24, 48], | |
window_size=7, | |
use_abs_pos_embed=False, | |
drop_path_rate=0.4, | |
patch_norm=True), | |
decode_head=dict( | |
kernel_generate_head=dict(in_channels=[192, 384, 768, 1536])), | |
auxiliary_head=dict(in_channels=768)) | |
crop_size = (640, 640) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict( | |
type='RandomResize', | |
scale=(2048, 640), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='PackSegInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 640), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict(type='PackSegInputs') | |
] | |
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | |
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |
# In K-Net implementation we use batch size 2 per GPU as default | |
train_dataloader = dict(batch_size=2, num_workers=2) | |
val_dataloader = dict(batch_size=1, num_workers=4) | |
test_dataloader = val_dataloader | |