snnetv2-semantic-segmentation / configs /mae /mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py
HubHop
update
412c852
raw
history blame
1.65 kB
_base_ = [
'../_base_/models/upernet_mae.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
data_preprocessor = dict(size=crop_size)
model = dict(
data_preprocessor=data_preprocessor,
pretrained='./pretrain/mae_pretrain_vit_base_mmcls.pth',
backbone=dict(
type='MAE',
img_size=(512, 512),
patch_size=16,
embed_dims=768,
num_layers=12,
num_heads=12,
mlp_ratio=4,
init_values=1.0,
drop_path_rate=0.1,
out_indices=[3, 5, 7, 11]),
neck=dict(embed_dim=768, rescales=[4, 2, 1, 0.5]),
decode_head=dict(
in_channels=[768, 768, 768, 768], num_classes=150, channels=768),
auxiliary_head=dict(in_channels=768, num_classes=150),
test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)))
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
optimizer=dict(
type='AdamW', lr=1e-4, betas=(0.9, 0.999), weight_decay=0.05),
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65),
constructor='LayerDecayOptimizerConstructor')
param_scheduler = [
dict(
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
dict(
type='PolyLR',
eta_min=0.0,
power=1.0,
begin=1500,
end=160000,
by_epoch=False,
)
]
# mixed precision
fp16 = dict(loss_scale='dynamic')
# By default, models are trained on 8 GPUs with 2 images per GPU
train_dataloader = dict(batch_size=2)
val_dataloader = dict(batch_size=1)
test_dataloader = val_dataloader