Spaces:
Runtime error
Runtime error
Models: | |
- Name: mae-base_upernet_8xb2-amp-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 48.13 | |
mIoU(ms+flip): 48.7 | |
Config: configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- ViT-B | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 9.96 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json | |
Paper: | |
Title: Masked Autoencoders Are Scalable Vision Learners | |
URL: https://arxiv.org/abs/2111.06377 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.24.0/mmseg/models/backbones/mae.py#L46 | |
Framework: PyTorch | |