HubHop
update
412c852
raw
history blame
18.1 kB
Collections:
- Name: PSANet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
README: configs/psanet/README.md
Frameworks:
- PyTorch
Models:
- Name: psanet_r50-d8_4xb2-40k_cityscapes-512x1024
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.63
mIoU(ms+flip): 79.04
Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 7.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb2-40k_cityscapes-512x1024
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.14
mIoU(ms+flip): 80.19
Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 10.5
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb2-40k_cityscapes-769x769
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.99
mIoU(ms+flip): 79.64
Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 7.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb2-40k_cityscapes-769x769
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.43
mIoU(ms+flip): 80.26
Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 11.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb2-80k_cityscapes-512x1024
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.24
mIoU(ms+flip): 78.69
Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb2-80k_cityscapes-512x1024
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.31
mIoU(ms+flip): 80.53
Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb2-80k_cityscapes-769x769
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.31
mIoU(ms+flip): 80.91
Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb2-80k_cityscapes-769x769
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.69
mIoU(ms+flip): 80.89
Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb4-80k_ade20k-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.14
mIoU(ms+flip): 41.91
Config: configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb4-80k_ade20k-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.8
mIoU(ms+flip): 44.75
Config: configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 12.5
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb4-160k_ade20k-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.67
mIoU(ms+flip): 42.95
Config: configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb4-160k_ade20k-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.74
mIoU(ms+flip): 45.38
Config: configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb4-20k_voc12aug-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.39
mIoU(ms+flip): 77.34
Config: configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 6.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb4-20k_voc12aug-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.91
mIoU(ms+flip): 79.3
Config: configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Memory (GB): 10.4
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r50-d8_4xb4-40k_voc12aug-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.3
mIoU(ms+flip): 77.35
Config: configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-50-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch
- Name: psanet_r101-d8_4xb4-40k_voc12aug-512x512
In Collection: PSANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.73
mIoU(ms+flip): 79.05
Config: configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-101-D8
- PSANet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json
Paper:
Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing'
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18
Framework: PyTorch