HubHop
update
412c852
raw
history blame
8.25 kB
Models:
- Name: resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024
In Collection: FCN
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.56
mIoU(ms+flip): 78.98
Config: configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- S-101-D8
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 11.4
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024
In Collection: PSPNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.57
mIoU(ms+flip): 79.19
Config: configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- S-101-D8
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 11.8
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024
In Collection: DeepLabV3
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.67
mIoU(ms+flip): 80.51
Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- S-101-D8
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 11.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024
In Collection: DeepLabV3+
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.62
mIoU(ms+flip): 80.27
Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- S-101-D8
- DeepLabV3+
Training Resources: 4x V100 GPUS
Memory (GB): 13.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512
In Collection: FCN
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.62
mIoU(ms+flip): 46.16
Config: configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- S-101-D8
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 14.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512
In Collection: PSPNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.44
mIoU(ms+flip): 46.28
Config: configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- S-101-D8
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 14.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512
In Collection: DeepLabV3
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.71
mIoU(ms+flip): 46.59
Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- S-101-D8
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 14.6
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch
- Name: resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512
In Collection: DeepLabV3+
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.47
mIoU(ms+flip): 47.27
Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- S-101-D8
- DeepLabV3+
Training Resources: 4x V100 GPUS
Memory (GB): 16.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json
Paper:
Title: 'ResNeSt: Split-Attention Networks'
URL: https://arxiv.org/abs/2004.08955
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
Framework: PyTorch