HubHop
update
412c852
raw
history blame
19.3 kB
# Copyright (c) OpenMMLab. All rights reserved.import math
import json
import math
import torch
import torch.nn as nn
from mmengine.model.weight_init import (constant_init, kaiming_init,
trunc_normal_)
from mmengine.model import ModuleList
from mmengine.runner.checkpoint import _load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from .mae import MAE
from mmengine.model import BaseModule
import numpy as np
from .lora import wrap_model_with_lora, Linear
def rearrange_activations(activations):
n_channels = activations.shape[-1]
activations = activations.reshape(-1, n_channels)
return activations
def ps_inv(x1, x2):
'''Least-squares solver given feature maps from two anchors.
'''
x1 = rearrange_activations(x1)
x2 = rearrange_activations(x2)
if not x1.shape[0] == x2.shape[0]:
raise ValueError('Spatial size of compared neurons must match when ' \
'calculating psuedo inverse matrix.')
# Get transformation matrix shape
shape = list(x1.shape)
shape[-1] += 1
# Calculate pseudo inverse
x1_ones = torch.ones(shape)
x1_ones[:, :-1] = x1
A_ones = torch.matmul(torch.linalg.pinv(x1_ones), x2.to(x1_ones.device)).T
# Get weights and bias
w = A_ones[..., :-1]
b = A_ones[..., -1]
return w, b
def reset_out_indices(front_depth=12, end_depth=24, out_indices=(9, 14, 19, 23)):
block_ids = torch.tensor(list(range(front_depth)))
block_ids = block_ids[None, None, :].float()
end_mapping_ids = torch.nn.functional.interpolate(block_ids, end_depth)
end_mapping_ids = end_mapping_ids.squeeze().long().tolist()
small_out_indices = []
for i, idx in enumerate(end_mapping_ids):
if i in out_indices:
small_out_indices.append(idx)
return small_out_indices
def get_stitch_configs_general_unequal(depths):
depths = sorted(depths)
total_configs = []
# anchor configurations
total_configs.append({'comb_id': [0], })
total_configs.append({'comb_id': [1], })
num_stitches = depths[0]
for i, blk_id in enumerate(range(num_stitches)):
if i == depths[0] - 1:
break
total_configs.append({
'comb_id': (0, 1),
'stitch_cfgs': (i, (i + 1) * (depths[1]//depths[0]))
})
return total_configs, num_stitches
def get_stitch_configs_bidirection(depths):
depths = sorted(depths)
total_configs = []
# anchor configurations
total_configs.append({'comb_id': [0], })
total_configs.append({'comb_id': [1], })
num_stitches = depths[0]
# small --> large
sl_configs = []
for i, blk_id in enumerate(range(num_stitches)):
sl_configs.append({
'comb_id': [0, 1],
'stitch_cfgs': [
[i, (i + 1) * (depths[1] // depths[0])]
],
'stitch_layer_ids': [i]
})
ls_configs = []
lsl_confgs = []
block_ids = torch.tensor(list(range(depths[0])))
block_ids = block_ids[None, None, :].float()
end_mapping_ids = torch.nn.functional.interpolate(block_ids, depths[1])
end_mapping_ids = end_mapping_ids.squeeze().long().tolist()
# large --> small
for i in range(depths[1]):
if depths[1] != depths[0]:
if i % 2 == 1 and i < (depths[1] - 1):
ls_configs.append({
'comb_id': [1, 0],
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]],
'stitch_layer_ids': [i // (depths[1] // depths[0])]
})
else:
if i < (depths[1] - 1):
ls_configs.append({
'comb_id': [1, 0],
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]],
'stitch_layer_ids': [i // (depths[1] // depths[0])]
})
# large --> small --> large
for ls_cfg in ls_configs:
for sl_cfg in sl_configs:
if sl_cfg['stitch_layer_ids'][0] == depths[0] - 1:
continue
if sl_cfg['stitch_cfgs'][0][0] >= ls_cfg['stitch_cfgs'][0][1]:
lsl_confgs.append({
'comb_id': [1, 0, 1],
'stitch_cfgs': [ls_cfg['stitch_cfgs'][0], sl_cfg['stitch_cfgs'][0]],
'stitch_layer_ids': ls_cfg['stitch_layer_ids'] + sl_cfg['stitch_layer_ids']
})
# small --> large --> small
sls_configs = []
for sl_cfg in sl_configs:
for ls_cfg in ls_configs:
if ls_cfg['stitch_cfgs'][0][0] >= sl_cfg['stitch_cfgs'][0][1]:
sls_configs.append({
'comb_id': [0, 1, 0],
'stitch_cfgs': [sl_cfg['stitch_cfgs'][0], ls_cfg['stitch_cfgs'][0]],
'stitch_layer_ids': sl_cfg['stitch_layer_ids'] + ls_cfg['stitch_layer_ids']
})
total_configs += sl_configs + ls_configs + lsl_confgs + sls_configs
anchor_ids = []
sl_ids = []
ls_ids = []
lsl_ids = []
sls_ids = []
for i, cfg in enumerate(total_configs):
comb_id = cfg['comb_id']
if len(comb_id) == 1:
anchor_ids.append(i)
continue
if len(comb_id) == 2:
route = []
front, end = cfg['stitch_cfgs'][0]
route.append([0, front])
route.append([end, depths[comb_id[-1]]])
cfg['route'] = route
if comb_id == [0, 1] and front != 11:
sl_ids.append(i)
elif comb_id == [1, 0]:
ls_ids.append(i)
if len(comb_id) == 3:
route = []
front_1, end_1 = cfg['stitch_cfgs'][0]
front_2, end_2 = cfg['stitch_cfgs'][1]
route.append([0, front_1])
route.append([end_1, front_2])
route.append([end_2, depths[comb_id[-1]]])
cfg['route'] = route
if comb_id == [1, 0, 1]:
lsl_ids.append(i)
elif comb_id == [0, 1, 0]:
sls_ids.append(i)
cfg['stitch_layer_ids'].append(-1)
model_combos = [(0, 1), (1, 0)]
return total_configs, model_combos, [len(sl_configs), len(ls_configs)], anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids
def format_out_features(outs, with_cls_token, hw_shape):
if len(outs[0].shape) == 4:
for i in range(len(outs)):
outs[i] = outs[i].permute(0, 3, 1, 2).contiguous()
else:
B, _, C = outs[0].shape
for i in range(len(outs)):
if with_cls_token:
# Remove class token and reshape token for decoder head
outs[i] = outs[i][:, 1:].reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2).contiguous()
else:
outs[i] = outs[i].reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2).contiguous()
return outs
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
# import loralib as lora
class StitchingLayer(BaseModule):
def __init__(self, in_features=None, out_features=None, r=0):
super().__init__()
self.transform = Linear(in_features, out_features, r)
def init_stitch_weights_bias(self, weight, bias):
self.transform.weight.data.copy_(weight)
self.transform.bias.data.copy_(bias)
def forward(self, x):
out = self.transform(x)
return out
@BACKBONES.register_module()
class SNNetv1(BaseModule):
def __init__(self, anchors=None):
super(SNNetv1, self).__init__()
self.anchors = nn.ModuleList()
for cfg in anchors:
mod = MAE(**cfg)
self.anchors.append(mod)
self.with_cls_token = self.anchors[0].with_cls_token
self.depths = [anc.num_layers for anc in self.anchors]
# reset out indices of small
self.anchors[0].out_indices = reset_out_indices(self.depths[0], self.depths[1], self.anchors[1].out_indices)
total_configs, num_stitches = get_stitch_configs_general_unequal(self.depths)
self.stitch_layers = nn.ModuleList([StitchingLayer(self.anchors[0].embed_dims, self.anchors[1].embed_dims) for _ in range(num_stitches)])
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)}
self.all_cfgs = list(self.stitch_configs.keys())
self.num_configs = len(total_configs)
self.stitch_config_id = 0
def reset_stitch_id(self, stitch_config_id):
self.stitch_config_id = stitch_config_id
def initialize_stitching_weights(self, x):
# logger = get_root_logger()
front, end = 0, 1
with torch.no_grad():
front_features = self.anchors[front].extract_block_features(x)
end_features = self.anchors[end].extract_block_features(x)
for i, blk_id in enumerate(range(self.depths[0])):
front_id, end_id = i, (i + 1) * (self.depths[1] // self.depths[0])
front_blk_feat = front_features[front_id]
end_blk_feat = end_features[end_id - 1]
w, b = ps_inv(front_blk_feat, end_blk_feat)
self.stitch_layers[i].init_stitch_weights_bias(w, b)
print(f'Initialized Stitching Model {front} to Model {end}, Layer {i}')
def init_weights(self):
for anc in self.anchors:
anc.init_weights()
def forward(self, x):
# randomly sample a stitch at each training iteration
if self.training:
stitch_cfg_id = np.random.randint(0, self.num_configs)
else:
stitch_cfg_id = self.stitch_config_id
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id']
if len(comb_id) == 1:
outs, hw_shape = self.anchors[comb_id[0]](x)
# in case forwarding the smaller anchor
if comb_id[0] == 0:
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices):
outs[i] = self.stitch_layers[out_idx](outs[i])
else:
cfg = self.stitch_configs[stitch_cfg_id]['stitch_cfgs']
x, outs, hw_shape = self.anchors[comb_id[0]].forward_until(x, blk_id=cfg[0])
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices):
if out_idx < cfg[0]:
outs[i] = self.stitch_layers[out_idx](outs[i])
x = self.stitch_layers[cfg[0]](x)
if cfg[0] in self.anchors[comb_id[0]].out_indices:
outs[-1] = x
B, _, C = x.shape
outs_2 = self.anchors[comb_id[1]].forward_from(x, blk_id=cfg[1])
outs += outs_2
outs = format_out_features(outs, self.with_cls_token, hw_shape)
return outs
@BACKBONES.register_module()
class SNNetv2(BaseModule):
def __init__(self, anchors=None, selected_ids=[], include_sl=True, include_ls=True, include_lsl=True, include_sls=True, lora_r=0, pretrained=None):
super(SNNetv2, self).__init__()
self.lora_r = lora_r
self.anchors = nn.ModuleList()
for cfg in anchors:
mod = MAE(**cfg)
self.anchors.append(mod)
self.with_cls_token = self.anchors[0].with_cls_token
self.depths = [anc.num_layers for anc in self.anchors]
# reset out indices of small
self.anchors[0].out_indices = reset_out_indices(self.depths[0], self.depths[1], self.anchors[1].out_indices)
total_configs, model_combos, num_stitches, anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids = get_stitch_configs_bidirection(self.depths)
self.stitch_layers = nn.ModuleList()
self.stitching_map_id = {}
for i, (comb, num_sth) in enumerate(zip(model_combos, num_stitches)):
front, end = comb
temp = nn.ModuleList(
[StitchingLayer(self.anchors[front].embed_dims, self.anchors[end].embed_dims, lora_r) for _ in range(num_sth)])
temp.append(nn.Identity())
self.stitch_layers.append(temp)
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)}
self.stitch_init_configs = {i: cfg for i, cfg in enumerate(total_configs) if len(cfg['comb_id']) == 2}
self.selected_ids = selected_ids
if len(selected_ids) == 0:
self.all_cfgs = anchor_ids
if include_sl:
self.all_cfgs += sl_ids
if include_ls:
self.all_cfgs += ls_ids
if include_lsl:
self.all_cfgs += lsl_ids
if include_sls:
self.all_cfgs += sls_ids
else:
self.all_cfgs = selected_ids
self.trained_cfgs = {}
for idx in self.all_cfgs:
self.trained_cfgs[idx] = self.stitch_configs[idx]
print(str(self.all_cfgs))
self.num_configs = len(self.stitch_configs)
self.stitch_config_id = 0
def reset_stitch_id(self, stitch_config_id):
self.stitch_config_id = stitch_config_id
def initialize_stitching_weights(self, x):
anchor_features = []
for anchor in self.anchors:
with torch.no_grad():
temp = anchor.extract_block_features(x)
anchor_features.append(temp)
for idx, cfg in self.stitch_init_configs.items():
comb_id = cfg['comb_id']
if len(comb_id) == 2:
front_id, end_id = cfg['stitch_cfgs'][0]
stitch_layer_id = cfg['stitch_layer_ids'][0]
front_blk_feat = anchor_features[comb_id[0]][front_id]
end_blk_feat = anchor_features[comb_id[1]][end_id - 1]
w, b = ps_inv(front_blk_feat, end_blk_feat)
self.stitch_layers[comb_id[0]][stitch_layer_id].init_stitch_weights_bias(w, b)
print(f'Initialized Stitching Layer {cfg}')
def resize_abs_pos_embed(self, state_dict):
pos_keys = [k for k in state_dict.keys() if 'pos_embed' in k]
for pos_k in pos_keys:
anchor_id = int(pos_k.split('.')[1])
# if 'pos_embed' in state_dict:
pos_embed_checkpoint = state_dict[pos_k]
embedding_size = pos_embed_checkpoint.shape[-1]
num_extra_tokens = self.anchors[anchor_id].pos_embed.shape[-2] - self.anchors[anchor_id].num_patches
# height (== width) for the checkpoint position embedding
orig_size = int(
(pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
# height (== width) for the new position embedding
new_size = int(self.anchors[anchor_id].num_patches**0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
embedding_size).permute(
0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens,
size=(new_size, new_size),
mode=self.anchors[anchor_id].interpolate_mode,
align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
state_dict[pos_k] = new_pos_embed
return state_dict
def init_weights(self):
for anc in self.anchors:
anc.init_weights()
def sampling_stitch_config(self):
flops_id = np.random.choice(len(self.flops_grouped_cfgs))
self.stitch_config_id = np.random.choice(self.flops_grouped_cfgs[flops_id])
def get_stitch_parameters(self):
stitch_cfg_id = self.stitch_config_id
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id']
total_params = 0
# forward by a single anchor
if len(comb_id) == 1:
total_params += sum(p.numel() for p in self.anchors[comb_id[0]].parameters())
# outs, hw_shape = self.anchors[comb_id[0]](x)
# in case forwarding the smaller anchor
if comb_id[0] == 0:
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices):
total_params += sum([p.numel() for p in self.stitch_layers[0][out_idx].parameters()])
return total_params
# forward among anchors
route = self.stitch_configs[stitch_cfg_id]['route']
stitch_layer_ids = self.stitch_configs[stitch_cfg_id]['stitch_layer_ids']
# patch embeding
total_params += self.anchors[comb_id[0]].patch_embed_params()
for i, (model_id, cfg) in enumerate(zip(comb_id, route)):
total_params += self.anchors[model_id].selective_params(cfg[0], cfg[1])
if model_id == 0:
mapping_idx = [idx for idx in self.anchors[model_id].out_indices if cfg[0] <= idx <= cfg[1]]
for j, out_idx in enumerate(mapping_idx):
total_params += sum([p.numel() for p in self.stitch_layers[model_id][out_idx].parameters()])
total_params += sum([p.numel() for p in self.stitch_layers[model_id][stitch_layer_ids[i]].parameters()])
return total_params
def forward(self, x):
if self.training:
self.sampling_stitch_config()
stitch_cfg_id = self.stitch_config_id
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id']
# forward by a single anchor
if len(comb_id) == 1:
outs, hw_shape = self.anchors[comb_id[0]](x)
# in case forwarding the smaller anchor
if comb_id[0] == 0:
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices):
outs[i] = self.stitch_layers[0][out_idx](outs[i])
outs = format_out_features(outs, self.with_cls_token, hw_shape)
return outs
# forward among anchors
route = self.stitch_configs[stitch_cfg_id]['route']
stitch_layer_ids = self.stitch_configs[stitch_cfg_id]['stitch_layer_ids']
# patch embeding
x, hw_shape = self.anchors[comb_id[0]].forward_patch_embed(x)
final_outs = []
for i, (model_id, cfg) in enumerate(zip(comb_id, route)):
x, outs = self.anchors[model_id].selective_forward(x, cfg[0], cfg[1])
if model_id == 0:
mapping_idx = [idx for idx in self.anchors[model_id].out_indices if cfg[0] <= idx <= cfg[1]]
for j, out_idx in enumerate(mapping_idx):
outs[j] = self.stitch_layers[model_id][out_idx](outs[j])
final_outs += outs
x = self.stitch_layers[model_id][stitch_layer_ids[i]](x)
final_outs = format_out_features(final_outs, self.with_cls_token, hw_shape)
return final_outs