Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved.import math | |
import json | |
import math | |
import torch | |
import torch.nn as nn | |
from mmengine.model.weight_init import (constant_init, kaiming_init, | |
trunc_normal_) | |
from mmengine.model import ModuleList | |
from mmengine.runner.checkpoint import _load_checkpoint | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from .mae import MAE | |
from mmengine.model import BaseModule | |
import numpy as np | |
from .lora import wrap_model_with_lora, Linear | |
def rearrange_activations(activations): | |
n_channels = activations.shape[-1] | |
activations = activations.reshape(-1, n_channels) | |
return activations | |
def ps_inv(x1, x2): | |
'''Least-squares solver given feature maps from two anchors. | |
''' | |
x1 = rearrange_activations(x1) | |
x2 = rearrange_activations(x2) | |
if not x1.shape[0] == x2.shape[0]: | |
raise ValueError('Spatial size of compared neurons must match when ' \ | |
'calculating psuedo inverse matrix.') | |
# Get transformation matrix shape | |
shape = list(x1.shape) | |
shape[-1] += 1 | |
# Calculate pseudo inverse | |
x1_ones = torch.ones(shape) | |
x1_ones[:, :-1] = x1 | |
A_ones = torch.matmul(torch.linalg.pinv(x1_ones), x2.to(x1_ones.device)).T | |
# Get weights and bias | |
w = A_ones[..., :-1] | |
b = A_ones[..., -1] | |
return w, b | |
def reset_out_indices(front_depth=12, end_depth=24, out_indices=(9, 14, 19, 23)): | |
block_ids = torch.tensor(list(range(front_depth))) | |
block_ids = block_ids[None, None, :].float() | |
end_mapping_ids = torch.nn.functional.interpolate(block_ids, end_depth) | |
end_mapping_ids = end_mapping_ids.squeeze().long().tolist() | |
small_out_indices = [] | |
for i, idx in enumerate(end_mapping_ids): | |
if i in out_indices: | |
small_out_indices.append(idx) | |
return small_out_indices | |
def get_stitch_configs_general_unequal(depths): | |
depths = sorted(depths) | |
total_configs = [] | |
# anchor configurations | |
total_configs.append({'comb_id': [0], }) | |
total_configs.append({'comb_id': [1], }) | |
num_stitches = depths[0] | |
for i, blk_id in enumerate(range(num_stitches)): | |
if i == depths[0] - 1: | |
break | |
total_configs.append({ | |
'comb_id': (0, 1), | |
'stitch_cfgs': (i, (i + 1) * (depths[1]//depths[0])) | |
}) | |
return total_configs, num_stitches | |
def get_stitch_configs_bidirection(depths): | |
depths = sorted(depths) | |
total_configs = [] | |
# anchor configurations | |
total_configs.append({'comb_id': [0], }) | |
total_configs.append({'comb_id': [1], }) | |
num_stitches = depths[0] | |
# small --> large | |
sl_configs = [] | |
for i, blk_id in enumerate(range(num_stitches)): | |
sl_configs.append({ | |
'comb_id': [0, 1], | |
'stitch_cfgs': [ | |
[i, (i + 1) * (depths[1] // depths[0])] | |
], | |
'stitch_layer_ids': [i] | |
}) | |
ls_configs = [] | |
lsl_confgs = [] | |
block_ids = torch.tensor(list(range(depths[0]))) | |
block_ids = block_ids[None, None, :].float() | |
end_mapping_ids = torch.nn.functional.interpolate(block_ids, depths[1]) | |
end_mapping_ids = end_mapping_ids.squeeze().long().tolist() | |
# large --> small | |
for i in range(depths[1]): | |
if depths[1] != depths[0]: | |
if i % 2 == 1 and i < (depths[1] - 1): | |
ls_configs.append({ | |
'comb_id': [1, 0], | |
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]], | |
'stitch_layer_ids': [i // (depths[1] // depths[0])] | |
}) | |
else: | |
if i < (depths[1] - 1): | |
ls_configs.append({ | |
'comb_id': [1, 0], | |
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]], | |
'stitch_layer_ids': [i // (depths[1] // depths[0])] | |
}) | |
# large --> small --> large | |
for ls_cfg in ls_configs: | |
for sl_cfg in sl_configs: | |
if sl_cfg['stitch_layer_ids'][0] == depths[0] - 1: | |
continue | |
if sl_cfg['stitch_cfgs'][0][0] >= ls_cfg['stitch_cfgs'][0][1]: | |
lsl_confgs.append({ | |
'comb_id': [1, 0, 1], | |
'stitch_cfgs': [ls_cfg['stitch_cfgs'][0], sl_cfg['stitch_cfgs'][0]], | |
'stitch_layer_ids': ls_cfg['stitch_layer_ids'] + sl_cfg['stitch_layer_ids'] | |
}) | |
# small --> large --> small | |
sls_configs = [] | |
for sl_cfg in sl_configs: | |
for ls_cfg in ls_configs: | |
if ls_cfg['stitch_cfgs'][0][0] >= sl_cfg['stitch_cfgs'][0][1]: | |
sls_configs.append({ | |
'comb_id': [0, 1, 0], | |
'stitch_cfgs': [sl_cfg['stitch_cfgs'][0], ls_cfg['stitch_cfgs'][0]], | |
'stitch_layer_ids': sl_cfg['stitch_layer_ids'] + ls_cfg['stitch_layer_ids'] | |
}) | |
total_configs += sl_configs + ls_configs + lsl_confgs + sls_configs | |
anchor_ids = [] | |
sl_ids = [] | |
ls_ids = [] | |
lsl_ids = [] | |
sls_ids = [] | |
for i, cfg in enumerate(total_configs): | |
comb_id = cfg['comb_id'] | |
if len(comb_id) == 1: | |
anchor_ids.append(i) | |
continue | |
if len(comb_id) == 2: | |
route = [] | |
front, end = cfg['stitch_cfgs'][0] | |
route.append([0, front]) | |
route.append([end, depths[comb_id[-1]]]) | |
cfg['route'] = route | |
if comb_id == [0, 1] and front != 11: | |
sl_ids.append(i) | |
elif comb_id == [1, 0]: | |
ls_ids.append(i) | |
if len(comb_id) == 3: | |
route = [] | |
front_1, end_1 = cfg['stitch_cfgs'][0] | |
front_2, end_2 = cfg['stitch_cfgs'][1] | |
route.append([0, front_1]) | |
route.append([end_1, front_2]) | |
route.append([end_2, depths[comb_id[-1]]]) | |
cfg['route'] = route | |
if comb_id == [1, 0, 1]: | |
lsl_ids.append(i) | |
elif comb_id == [0, 1, 0]: | |
sls_ids.append(i) | |
cfg['stitch_layer_ids'].append(-1) | |
model_combos = [(0, 1), (1, 0)] | |
return total_configs, model_combos, [len(sl_configs), len(ls_configs)], anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids | |
def format_out_features(outs, with_cls_token, hw_shape): | |
if len(outs[0].shape) == 4: | |
for i in range(len(outs)): | |
outs[i] = outs[i].permute(0, 3, 1, 2).contiguous() | |
else: | |
B, _, C = outs[0].shape | |
for i in range(len(outs)): | |
if with_cls_token: | |
# Remove class token and reshape token for decoder head | |
outs[i] = outs[i][:, 1:].reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
else: | |
outs[i] = outs[i].reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
return outs | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
# import loralib as lora | |
class StitchingLayer(BaseModule): | |
def __init__(self, in_features=None, out_features=None, r=0): | |
super().__init__() | |
self.transform = Linear(in_features, out_features, r) | |
def init_stitch_weights_bias(self, weight, bias): | |
self.transform.weight.data.copy_(weight) | |
self.transform.bias.data.copy_(bias) | |
def forward(self, x): | |
out = self.transform(x) | |
return out | |
class SNNetv1(BaseModule): | |
def __init__(self, anchors=None): | |
super(SNNetv1, self).__init__() | |
self.anchors = nn.ModuleList() | |
for cfg in anchors: | |
mod = MAE(**cfg) | |
self.anchors.append(mod) | |
self.with_cls_token = self.anchors[0].with_cls_token | |
self.depths = [anc.num_layers for anc in self.anchors] | |
# reset out indices of small | |
self.anchors[0].out_indices = reset_out_indices(self.depths[0], self.depths[1], self.anchors[1].out_indices) | |
total_configs, num_stitches = get_stitch_configs_general_unequal(self.depths) | |
self.stitch_layers = nn.ModuleList([StitchingLayer(self.anchors[0].embed_dims, self.anchors[1].embed_dims) for _ in range(num_stitches)]) | |
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)} | |
self.all_cfgs = list(self.stitch_configs.keys()) | |
self.num_configs = len(total_configs) | |
self.stitch_config_id = 0 | |
def reset_stitch_id(self, stitch_config_id): | |
self.stitch_config_id = stitch_config_id | |
def initialize_stitching_weights(self, x): | |
# logger = get_root_logger() | |
front, end = 0, 1 | |
with torch.no_grad(): | |
front_features = self.anchors[front].extract_block_features(x) | |
end_features = self.anchors[end].extract_block_features(x) | |
for i, blk_id in enumerate(range(self.depths[0])): | |
front_id, end_id = i, (i + 1) * (self.depths[1] // self.depths[0]) | |
front_blk_feat = front_features[front_id] | |
end_blk_feat = end_features[end_id - 1] | |
w, b = ps_inv(front_blk_feat, end_blk_feat) | |
self.stitch_layers[i].init_stitch_weights_bias(w, b) | |
print(f'Initialized Stitching Model {front} to Model {end}, Layer {i}') | |
def init_weights(self): | |
for anc in self.anchors: | |
anc.init_weights() | |
def forward(self, x): | |
# randomly sample a stitch at each training iteration | |
if self.training: | |
stitch_cfg_id = np.random.randint(0, self.num_configs) | |
else: | |
stitch_cfg_id = self.stitch_config_id | |
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id'] | |
if len(comb_id) == 1: | |
outs, hw_shape = self.anchors[comb_id[0]](x) | |
# in case forwarding the smaller anchor | |
if comb_id[0] == 0: | |
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices): | |
outs[i] = self.stitch_layers[out_idx](outs[i]) | |
else: | |
cfg = self.stitch_configs[stitch_cfg_id]['stitch_cfgs'] | |
x, outs, hw_shape = self.anchors[comb_id[0]].forward_until(x, blk_id=cfg[0]) | |
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices): | |
if out_idx < cfg[0]: | |
outs[i] = self.stitch_layers[out_idx](outs[i]) | |
x = self.stitch_layers[cfg[0]](x) | |
if cfg[0] in self.anchors[comb_id[0]].out_indices: | |
outs[-1] = x | |
B, _, C = x.shape | |
outs_2 = self.anchors[comb_id[1]].forward_from(x, blk_id=cfg[1]) | |
outs += outs_2 | |
outs = format_out_features(outs, self.with_cls_token, hw_shape) | |
return outs | |
class SNNetv2(BaseModule): | |
def __init__(self, anchors=None, selected_ids=[], include_sl=True, include_ls=True, include_lsl=True, include_sls=True, lora_r=0, pretrained=None): | |
super(SNNetv2, self).__init__() | |
self.lora_r = lora_r | |
self.anchors = nn.ModuleList() | |
for cfg in anchors: | |
mod = MAE(**cfg) | |
self.anchors.append(mod) | |
self.with_cls_token = self.anchors[0].with_cls_token | |
self.depths = [anc.num_layers for anc in self.anchors] | |
# reset out indices of small | |
self.anchors[0].out_indices = reset_out_indices(self.depths[0], self.depths[1], self.anchors[1].out_indices) | |
total_configs, model_combos, num_stitches, anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids = get_stitch_configs_bidirection(self.depths) | |
self.stitch_layers = nn.ModuleList() | |
self.stitching_map_id = {} | |
for i, (comb, num_sth) in enumerate(zip(model_combos, num_stitches)): | |
front, end = comb | |
temp = nn.ModuleList( | |
[StitchingLayer(self.anchors[front].embed_dims, self.anchors[end].embed_dims, lora_r) for _ in range(num_sth)]) | |
temp.append(nn.Identity()) | |
self.stitch_layers.append(temp) | |
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)} | |
self.stitch_init_configs = {i: cfg for i, cfg in enumerate(total_configs) if len(cfg['comb_id']) == 2} | |
self.selected_ids = selected_ids | |
if len(selected_ids) == 0: | |
self.all_cfgs = anchor_ids | |
if include_sl: | |
self.all_cfgs += sl_ids | |
if include_ls: | |
self.all_cfgs += ls_ids | |
if include_lsl: | |
self.all_cfgs += lsl_ids | |
if include_sls: | |
self.all_cfgs += sls_ids | |
else: | |
self.all_cfgs = selected_ids | |
self.trained_cfgs = {} | |
for idx in self.all_cfgs: | |
self.trained_cfgs[idx] = self.stitch_configs[idx] | |
print(str(self.all_cfgs)) | |
self.num_configs = len(self.stitch_configs) | |
self.stitch_config_id = 0 | |
def reset_stitch_id(self, stitch_config_id): | |
self.stitch_config_id = stitch_config_id | |
def initialize_stitching_weights(self, x): | |
anchor_features = [] | |
for anchor in self.anchors: | |
with torch.no_grad(): | |
temp = anchor.extract_block_features(x) | |
anchor_features.append(temp) | |
for idx, cfg in self.stitch_init_configs.items(): | |
comb_id = cfg['comb_id'] | |
if len(comb_id) == 2: | |
front_id, end_id = cfg['stitch_cfgs'][0] | |
stitch_layer_id = cfg['stitch_layer_ids'][0] | |
front_blk_feat = anchor_features[comb_id[0]][front_id] | |
end_blk_feat = anchor_features[comb_id[1]][end_id - 1] | |
w, b = ps_inv(front_blk_feat, end_blk_feat) | |
self.stitch_layers[comb_id[0]][stitch_layer_id].init_stitch_weights_bias(w, b) | |
print(f'Initialized Stitching Layer {cfg}') | |
def resize_abs_pos_embed(self, state_dict): | |
pos_keys = [k for k in state_dict.keys() if 'pos_embed' in k] | |
for pos_k in pos_keys: | |
anchor_id = int(pos_k.split('.')[1]) | |
# if 'pos_embed' in state_dict: | |
pos_embed_checkpoint = state_dict[pos_k] | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_extra_tokens = self.anchors[anchor_id].pos_embed.shape[-2] - self.anchors[anchor_id].num_patches | |
# height (== width) for the checkpoint position embedding | |
orig_size = int( | |
(pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5) | |
# height (== width) for the new position embedding | |
new_size = int(self.anchors[anchor_id].num_patches**0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, | |
embedding_size).permute( | |
0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, | |
size=(new_size, new_size), | |
mode=self.anchors[anchor_id].interpolate_mode, | |
align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
state_dict[pos_k] = new_pos_embed | |
return state_dict | |
def init_weights(self): | |
for anc in self.anchors: | |
anc.init_weights() | |
def sampling_stitch_config(self): | |
flops_id = np.random.choice(len(self.flops_grouped_cfgs)) | |
self.stitch_config_id = np.random.choice(self.flops_grouped_cfgs[flops_id]) | |
def get_stitch_parameters(self): | |
stitch_cfg_id = self.stitch_config_id | |
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id'] | |
total_params = 0 | |
# forward by a single anchor | |
if len(comb_id) == 1: | |
total_params += sum(p.numel() for p in self.anchors[comb_id[0]].parameters()) | |
# outs, hw_shape = self.anchors[comb_id[0]](x) | |
# in case forwarding the smaller anchor | |
if comb_id[0] == 0: | |
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices): | |
total_params += sum([p.numel() for p in self.stitch_layers[0][out_idx].parameters()]) | |
return total_params | |
# forward among anchors | |
route = self.stitch_configs[stitch_cfg_id]['route'] | |
stitch_layer_ids = self.stitch_configs[stitch_cfg_id]['stitch_layer_ids'] | |
# patch embeding | |
total_params += self.anchors[comb_id[0]].patch_embed_params() | |
for i, (model_id, cfg) in enumerate(zip(comb_id, route)): | |
total_params += self.anchors[model_id].selective_params(cfg[0], cfg[1]) | |
if model_id == 0: | |
mapping_idx = [idx for idx in self.anchors[model_id].out_indices if cfg[0] <= idx <= cfg[1]] | |
for j, out_idx in enumerate(mapping_idx): | |
total_params += sum([p.numel() for p in self.stitch_layers[model_id][out_idx].parameters()]) | |
total_params += sum([p.numel() for p in self.stitch_layers[model_id][stitch_layer_ids[i]].parameters()]) | |
return total_params | |
def forward(self, x): | |
if self.training: | |
self.sampling_stitch_config() | |
stitch_cfg_id = self.stitch_config_id | |
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id'] | |
# forward by a single anchor | |
if len(comb_id) == 1: | |
outs, hw_shape = self.anchors[comb_id[0]](x) | |
# in case forwarding the smaller anchor | |
if comb_id[0] == 0: | |
for i, out_idx in enumerate(self.anchors[comb_id[0]].out_indices): | |
outs[i] = self.stitch_layers[0][out_idx](outs[i]) | |
outs = format_out_features(outs, self.with_cls_token, hw_shape) | |
return outs | |
# forward among anchors | |
route = self.stitch_configs[stitch_cfg_id]['route'] | |
stitch_layer_ids = self.stitch_configs[stitch_cfg_id]['stitch_layer_ids'] | |
# patch embeding | |
x, hw_shape = self.anchors[comb_id[0]].forward_patch_embed(x) | |
final_outs = [] | |
for i, (model_id, cfg) in enumerate(zip(comb_id, route)): | |
x, outs = self.anchors[model_id].selective_forward(x, cfg[0], cfg[1]) | |
if model_id == 0: | |
mapping_idx = [idx for idx in self.anchors[model_id].out_indices if cfg[0] <= idx <= cfg[1]] | |
for j, out_idx in enumerate(mapping_idx): | |
outs[j] = self.stitch_layers[model_id][out_idx](outs[j]) | |
final_outs += outs | |
x = self.stitch_layers[model_id][stitch_layer_ids[i]](x) | |
final_outs = format_out_features(final_outs, self.with_cls_token, hw_shape) | |
return final_outs | |