HubHop
update
412c852
raw
history blame
4.59 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.utils import OptConfigType
class BasicBlock(BaseModule):
"""Basic block from `ResNet <https://arxiv.org/abs/1512.03385>`_.
Args:
in_channels (int): Input channels.
channels (int): Output channels.
stride (int): Stride of the first block. Default: 1.
downsample (nn.Module, optional): Downsample operation on identity.
Default: None.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict, optional): Config dict for activation layer in
ConvModule. Default: dict(type='ReLU', inplace=True).
act_cfg_out (dict, optional): Config dict for activation layer at the
last of the block. Default: None.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
expansion = 1
def __init__(self,
in_channels: int,
channels: int,
stride: int = 1,
downsample: nn.Module = None,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
act_cfg_out: OptConfigType = dict(type='ReLU', inplace=True),
init_cfg: OptConfigType = None):
super().__init__(init_cfg)
self.conv1 = ConvModule(
in_channels,
channels,
kernel_size=3,
stride=stride,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv2 = ConvModule(
channels,
channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=None)
self.downsample = downsample
if act_cfg_out:
self.act = MODELS.build(act_cfg_out)
def forward(self, x: Tensor) -> Tensor:
residual = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
if hasattr(self, 'act'):
out = self.act(out)
return out
class Bottleneck(BaseModule):
"""Bottleneck block from `ResNet <https://arxiv.org/abs/1512.03385>`_.
Args:
in_channels (int): Input channels.
channels (int): Output channels.
stride (int): Stride of the first block. Default: 1.
downsample (nn.Module, optional): Downsample operation on identity.
Default: None.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict, optional): Config dict for activation layer in
ConvModule. Default: dict(type='ReLU', inplace=True).
act_cfg_out (dict, optional): Config dict for activation layer at
the last of the block. Default: None.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
expansion = 2
def __init__(self,
in_channels: int,
channels: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
act_cfg_out: OptConfigType = None,
init_cfg: OptConfigType = None):
super().__init__(init_cfg)
self.conv1 = ConvModule(
in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=act_cfg)
self.conv2 = ConvModule(
channels,
channels,
3,
stride,
1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv3 = ConvModule(
channels,
channels * self.expansion,
1,
norm_cfg=norm_cfg,
act_cfg=None)
if act_cfg_out:
self.act = MODELS.build(act_cfg_out)
self.downsample = downsample
def forward(self, x: Tensor) -> Tensor:
residual = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample:
residual = self.downsample(x)
out += residual
if hasattr(self, 'act'):
out = self.act(out)
return out