Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Modified from https://github.com/MendelXu/SAN/blob/main/san/model/attn_helper.py # noqa: E501 | |
# Copyright (c) 2023 MendelXu. | |
# Licensed under the MIT License | |
import warnings | |
from typing import Optional | |
import torch | |
from mmcv.cnn.bricks.transformer import BaseTransformerLayer | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
def cross_attn_with_self_bias( | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
embed_dim_to_check: int, | |
num_heads: int, | |
in_proj_weight: Tensor, | |
in_proj_bias: Tensor, | |
bias_k: Optional[Tensor], | |
bias_v: Optional[Tensor], | |
add_zero_attn: bool, | |
dropout_p: float, | |
out_proj_weight: Tensor, | |
out_proj_bias: Tensor, | |
training: bool = True, | |
key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, | |
attn_mask: Optional[Tensor] = None, | |
use_separate_proj_weight: bool = False, | |
q_proj_weight: Optional[Tensor] = None, | |
k_proj_weight: Optional[Tensor] = None, | |
v_proj_weight: Optional[Tensor] = None, | |
static_k: Optional[Tensor] = None, | |
static_v: Optional[Tensor] = None, | |
): | |
"""Forward function of multi-head attention. Modified from | |
multi_head_attention_forward in | |
https://github.com/pytorch/pytorch/blob/main/torch/nn/functional.py. | |
Args: | |
query, key, value: map a query and a set of key-value pairs to an output. | |
See "Attention Is All You Need" for more details. | |
embed_dim_to_check: total dimension of the model. | |
num_heads: parallel attention heads. | |
in_proj_weight, in_proj_bias: input projection weight and bias. | |
bias_k, bias_v: bias of the key and value sequences to be added at dim=0. | |
add_zero_attn: add a new batch of zeros to the key and | |
value sequences at dim=1. | |
dropout_p: probability of an element to be zeroed. | |
out_proj_weight, out_proj_bias: the output projection weight and bias. | |
training: apply dropout if is ``True``. | |
key_padding_mask: if provided, specified padding elements in the key will | |
be ignored by the attention. This is an binary mask. When the value is True, | |
the corresponding value on the attention layer will be filled with -inf. | |
need_weights: output attn_output_weights. | |
Default: `True` | |
Note: `needs_weight` defaults to `True`, but should be set to `False` | |
For best performance when attention weights are not needed. | |
*Setting needs_weights to `True` | |
leads to a significant performance degradation.* | |
attn_mask: 2D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
use_separate_proj_weight: the function accept the proj. weights for query, key, | |
and value in different forms. If false, in_proj_weight will be used, which is | |
a combination of q_proj_weight, k_proj_weight, v_proj_weight. | |
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. | |
static_k, static_v: static key and value used for attention operators. | |
""" # noqa: E501 | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == embed_dim_to_check | |
# allow MHA to have different sizes for the feature dimension | |
assert key.size(0) == value.size(0) and key.size(1) == value.size(1) | |
head_dim = embed_dim // num_heads | |
assert head_dim * num_heads == embed_dim, \ | |
'embed_dim must be divisible by num_heads' | |
scaling = float(head_dim)**-0.5 | |
if not use_separate_proj_weight: | |
if (query is key or torch.equal( | |
query, key)) and (key is value or torch.equal(key, value)): | |
# self-attention | |
raise NotImplementedError('self-attention is not implemented') | |
elif key is value or torch.equal(key, value): | |
# encoder-decoder attention | |
# This is inline in_proj function | |
# with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = 0 | |
_end = embed_dim | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
q = F.linear(query, _w, _b) | |
if key is None: | |
assert value is None | |
k = None | |
v = None | |
q_k = None | |
q_v = None | |
else: | |
# This is inline in_proj function with | |
# in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim | |
_end = None | |
_w = in_proj_weight[_start:, :] | |
if _b is not None: | |
_b = _b[_start:] | |
k, v = F.linear(key, _w, _b).chunk(2, dim=-1) | |
q_k, q_v = F.linear(query, _w, _b).chunk(2, dim=-1) | |
else: | |
# This is inline in_proj function with | |
# in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = 0 | |
_end = embed_dim | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
q = F.linear(query, _w, _b) | |
# This is inline in_proj function with | |
# in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim | |
_end = embed_dim * 2 | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
k = F.linear(key, _w, _b) | |
q_k = F.linear(query, _w, _b) | |
# This is inline in_proj function with | |
# in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim * 2 | |
_end = None | |
_w = in_proj_weight[_start:, :] | |
if _b is not None: | |
_b = _b[_start:] | |
v = F.linear(value, _w, _b) | |
q_v = F.linear(query, _w, _b) | |
else: | |
q_proj_weight_non_opt = \ | |
torch.jit._unwrap_optional(q_proj_weight) | |
len1, len2 = q_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == query.size(-1) | |
k_proj_weight_non_opt = \ | |
torch.jit._unwrap_optional(k_proj_weight) | |
len1, len2 = k_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == key.size(-1) | |
v_proj_weight_non_opt = \ | |
torch.jit._unwrap_optional(v_proj_weight) | |
len1, len2 = v_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == value.size(-1) | |
if in_proj_bias is not None: | |
q = F.linear(query, q_proj_weight_non_opt, | |
in_proj_bias[0:embed_dim]) | |
k = F.linear(key, k_proj_weight_non_opt, | |
in_proj_bias[embed_dim:(embed_dim * 2)]) | |
v = F.linear(value, v_proj_weight_non_opt, | |
in_proj_bias[(embed_dim * 2):]) | |
else: | |
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias) | |
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias) | |
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias) | |
q = q * scaling | |
if attn_mask is not None: | |
assert ( | |
attn_mask.dtype == torch.float32 | |
or attn_mask.dtype == torch.float64 | |
or attn_mask.dtype == torch.float16 | |
or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool | |
), 'Only float, byte, and bool types are supported for ' \ | |
'attn_mask, not {}'.format(attn_mask.dtype) | |
if attn_mask.dtype == torch.uint8: | |
warnings.warn('Byte tensor for attn_mask in nn.MultiheadAttention ' | |
'is deprecated. Use bool tensor instead.') | |
attn_mask = attn_mask.to(torch.bool) | |
if attn_mask.dim() == 2: | |
attn_mask = attn_mask.unsqueeze(0) | |
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: | |
raise RuntimeError( | |
'The size of the 2D attn_mask is not correct.') | |
elif attn_mask.dim() == 3: | |
if list(attn_mask.size()) != [ | |
bsz * num_heads, | |
query.size(0), key.size(0) | |
]: | |
raise RuntimeError( | |
'The size of the 3D attn_mask is not correct.') | |
else: | |
raise RuntimeError( | |
"attn_mask's dimension {} is not supported".format( | |
attn_mask.dim())) | |
# attn_mask's dim is 3 now. | |
# convert ByteTensor key_padding_mask to bool | |
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: | |
warnings.warn( | |
'Byte tensor for key_padding_mask in nn.MultiheadAttention ' | |
'is deprecated. Use bool tensor instead.') | |
key_padding_mask = key_padding_mask.to(torch.bool) | |
if bias_k is not None and bias_v is not None: | |
if static_k is None and static_v is None: | |
k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = F.pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = F.pad(key_padding_mask, (0, 1)) | |
else: | |
assert static_k is None, 'bias cannot be added to static key.' | |
assert static_v is None, 'bias cannot be added to static value.' | |
else: | |
assert bias_k is None | |
assert bias_v is None | |
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) | |
if k is not None: | |
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
q_k = q_k.contiguous().view(tgt_len, bsz * num_heads, | |
head_dim).transpose(0, 1) | |
if v is not None: | |
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
q_v = q_v.contiguous().view(tgt_len, bsz * num_heads, | |
head_dim).transpose(0, 1) | |
if static_k is not None: | |
assert static_k.size(0) == bsz * num_heads | |
assert static_k.size(2) == head_dim | |
k = static_k | |
if static_v is not None: | |
assert static_v.size(0) == bsz * num_heads | |
assert static_v.size(2) == head_dim | |
v = static_v | |
src_len = k.size(1) | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
if add_zero_attn: | |
src_len += 1 | |
k = torch.cat( | |
[ | |
k, | |
torch.zeros( | |
(k.size(0), 1) + k.size()[2:], | |
dtype=k.dtype, | |
device=k.device), | |
], | |
dim=1, | |
) | |
v = torch.cat( | |
[ | |
v, | |
torch.zeros( | |
(v.size(0), 1) + v.size()[2:], | |
dtype=v.dtype, | |
device=v.device), | |
], | |
dim=1, | |
) | |
if attn_mask is not None: | |
attn_mask = F.pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = F.pad(key_padding_mask, (0, 1)) | |
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list( | |
attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_output_weights.masked_fill_(attn_mask, float('-inf')) | |
else: | |
attn_output_weights += attn_mask | |
if key_padding_mask is not None: | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, | |
src_len) | |
attn_output_weights = attn_output_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2), | |
float('-inf'), | |
) | |
attn_output_weights = attn_output_weights.view(bsz * num_heads, | |
tgt_len, src_len) | |
# attn_out_weights: [bsz * num_heads, tgt_len, src_len] | |
# ->[bsz * num_heads, tgt_len, src_len+1] | |
self_weight = (q * q_k).sum( | |
dim=-1, keepdim=True) # [bsz * num_heads, tgt_len, 1] | |
total_attn_output_weights = torch.cat([attn_output_weights, self_weight], | |
dim=-1) | |
total_attn_output_weights = F.softmax(total_attn_output_weights, dim=-1) | |
total_attn_output_weights = F.dropout( | |
total_attn_output_weights, p=dropout_p, training=training) | |
attn_output_weights = \ | |
total_attn_output_weights[:, :, : -1] | |
# [bsz * num_heads, tgt_len, src_len] | |
self_weight = \ | |
total_attn_output_weights[:, :, -1:] # [bsz * num_heads, tgt_len, 1] | |
attn_output = torch.bmm(attn_output_weights, | |
v) # [bsz * num_heads, tgt_len, head_dim] | |
attn_output = (attn_output + self_weight * q_v | |
) # [bsz * num_heads, tgt_len, head_dim] | |
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] | |
attn_output = attn_output.transpose(0, 1).contiguous().view( | |
tgt_len, bsz, embed_dim) | |
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) | |
if need_weights: | |
# average attention weights over heads | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, | |
src_len) | |
return attn_output, attn_output_weights # .sum(dim=1) / num_heads | |
else: | |
return attn_output, None | |
def cross_attn_layer(tf_layer: BaseTransformerLayer, x, mem, attn_bias): | |
"""Implementation of transformer layer with cross attention. The cross | |
attention shares the embedding weights with self-attention of tf_layer. | |
Args: | |
tf_layer: (TransformerEncoderLayer): The Module of transformer layer. | |
x (Tensor): query [K,N,C] | |
mem (Tensor): key and value [L,N,C] | |
attn_bias (Tensor): attention bias [N*num_head,K,L] | |
Return: | |
x (Tensor): cross attention output [K,N,C] | |
""" | |
self_attn_layer = tf_layer.attentions[0].attn | |
attn_layer_paras = { | |
'embed_dim_to_check': self_attn_layer.embed_dim, | |
'num_heads': self_attn_layer.num_heads, | |
'in_proj_weight': self_attn_layer.in_proj_weight, | |
'in_proj_bias': self_attn_layer.in_proj_bias, | |
'bias_k': self_attn_layer.bias_k, | |
'bias_v': self_attn_layer.bias_v, | |
'add_zero_attn': self_attn_layer.add_zero_attn, | |
'dropout_p': self_attn_layer.dropout, | |
'out_proj_weight': self_attn_layer.out_proj.weight, | |
'out_proj_bias': self_attn_layer.out_proj.bias, | |
'training': self_attn_layer.training | |
} | |
q_x = tf_layer.norms[0](x) | |
k_x = v_x = tf_layer.norms[0](mem) | |
x = x + cross_attn_with_self_bias( | |
q_x, | |
k_x, | |
v_x, | |
attn_mask=attn_bias, | |
need_weights=False, | |
**attn_layer_paras)[0] | |
x = tf_layer.ffns[0](tf_layer.norms[1](x), identity=x) | |
return x | |
class LayerNorm2d(nn.Module): | |
"""A LayerNorm variant, popularized by Transformers, that performs point- | |
wise mean and variance normalization over the channel dimension for inputs | |
that have shape (batch_size, channels, height, width). | |
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa B950 | |
""" | |
def __init__(self, normalized_shape, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x: torch.Tensor): | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class MLP(nn.Module): | |
"""Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, | |
input_dim, | |
hidden_dim, | |
output_dim, | |
num_layers, | |
affine_func=nn.Linear): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList( | |
affine_func(n, k) | |
for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x: torch.Tensor): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |