Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from matplotlib.ticker import MultipleLocator | |
from mmengine.config import Config, DictAction | |
from mmengine.registry import init_default_scope | |
from mmengine.utils import mkdir_or_exist, progressbar | |
from PIL import Image | |
from mmseg.registry import DATASETS | |
init_default_scope('mmseg') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate confusion matrix from segmentation results') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument( | |
'prediction_path', help='prediction path where test folder result') | |
parser.add_argument( | |
'save_dir', help='directory where confusion matrix will be saved') | |
parser.add_argument( | |
'--show', action='store_true', help='show confusion matrix') | |
parser.add_argument( | |
'--color-theme', | |
default='winter', | |
help='theme of the matrix color map') | |
parser.add_argument( | |
'--title', | |
default='Normalized Confusion Matrix', | |
help='title of the matrix color map') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
def calculate_confusion_matrix(dataset, results): | |
"""Calculate the confusion matrix. | |
Args: | |
dataset (Dataset): Test or val dataset. | |
results (list[ndarray]): A list of segmentation results in each image. | |
""" | |
n = len(dataset.METAINFO['classes']) | |
confusion_matrix = np.zeros(shape=[n, n]) | |
assert len(dataset) == len(results) | |
ignore_index = dataset.ignore_index | |
reduce_zero_label = dataset.reduce_zero_label | |
prog_bar = progressbar.ProgressBar(len(results)) | |
for idx, per_img_res in enumerate(results): | |
res_segm = per_img_res | |
gt_segm = dataset[idx]['data_samples'] \ | |
.gt_sem_seg.data.squeeze().numpy().astype(np.uint8) | |
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten() | |
if reduce_zero_label: | |
gt_segm = gt_segm - 1 | |
to_ignore = gt_segm == ignore_index | |
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore] | |
inds = n * gt_segm + res_segm | |
mat = np.bincount(inds, minlength=n**2).reshape(n, n) | |
confusion_matrix += mat | |
prog_bar.update() | |
return confusion_matrix | |
def plot_confusion_matrix(confusion_matrix, | |
labels, | |
save_dir=None, | |
show=True, | |
title='Normalized Confusion Matrix', | |
color_theme='OrRd'): | |
"""Draw confusion matrix with matplotlib. | |
Args: | |
confusion_matrix (ndarray): The confusion matrix. | |
labels (list[str]): List of class names. | |
save_dir (str|optional): If set, save the confusion matrix plot to the | |
given path. Default: None. | |
show (bool): Whether to show the plot. Default: True. | |
title (str): Title of the plot. Default: `Normalized Confusion Matrix`. | |
color_theme (str): Theme of the matrix color map. Default: `winter`. | |
""" | |
# normalize the confusion matrix | |
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] | |
confusion_matrix = \ | |
confusion_matrix.astype(np.float32) / per_label_sums * 100 | |
num_classes = len(labels) | |
fig, ax = plt.subplots( | |
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300) | |
cmap = plt.get_cmap(color_theme) | |
im = ax.imshow(confusion_matrix, cmap=cmap) | |
colorbar = plt.colorbar(mappable=im, ax=ax) | |
colorbar.ax.tick_params(labelsize=20) # 设置 colorbar 标签的字体大小 | |
title_font = {'weight': 'bold', 'size': 20} | |
ax.set_title(title, fontdict=title_font) | |
label_font = {'size': 40} | |
plt.ylabel('Ground Truth Label', fontdict=label_font) | |
plt.xlabel('Prediction Label', fontdict=label_font) | |
# draw locator | |
xmajor_locator = MultipleLocator(1) | |
xminor_locator = MultipleLocator(0.5) | |
ax.xaxis.set_major_locator(xmajor_locator) | |
ax.xaxis.set_minor_locator(xminor_locator) | |
ymajor_locator = MultipleLocator(1) | |
yminor_locator = MultipleLocator(0.5) | |
ax.yaxis.set_major_locator(ymajor_locator) | |
ax.yaxis.set_minor_locator(yminor_locator) | |
# draw grid | |
ax.grid(True, which='minor', linestyle='-') | |
# draw label | |
ax.set_xticks(np.arange(num_classes)) | |
ax.set_yticks(np.arange(num_classes)) | |
ax.set_xticklabels(labels, fontsize=20) | |
ax.set_yticklabels(labels, fontsize=20) | |
ax.tick_params( | |
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) | |
plt.setp( | |
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') | |
# draw confusion matrix value | |
for i in range(num_classes): | |
for j in range(num_classes): | |
ax.text( | |
j, | |
i, | |
'{}%'.format( | |
round(confusion_matrix[i, j], 2 | |
) if not np.isnan(confusion_matrix[i, j]) else -1), | |
ha='center', | |
va='center', | |
color='k', | |
size=20) | |
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1 | |
fig.tight_layout() | |
if save_dir is not None: | |
mkdir_or_exist(save_dir) | |
plt.savefig( | |
os.path.join(save_dir, 'confusion_matrix.png'), format='png') | |
if show: | |
plt.show() | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
results = [] | |
for img in sorted(os.listdir(args.prediction_path)): | |
img = os.path.join(args.prediction_path, img) | |
image = Image.open(img) | |
image = np.copy(image) | |
results.append(image) | |
assert isinstance(results, list) | |
if isinstance(results[0], np.ndarray): | |
pass | |
else: | |
raise TypeError('invalid type of prediction results') | |
dataset = DATASETS.build(cfg.test_dataloader.dataset) | |
confusion_matrix = calculate_confusion_matrix(dataset, results) | |
plot_confusion_matrix( | |
confusion_matrix, | |
dataset.METAINFO['classes'], | |
save_dir=args.save_dir, | |
show=args.show, | |
title=args.title, | |
color_theme=args.color_theme) | |
if __name__ == '__main__': | |
main() | |