Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import tempfile | |
from pathlib import Path | |
import torch | |
from mmengine import Config, DictAction | |
from mmengine.logging import MMLogger | |
from mmengine.model import revert_sync_batchnorm | |
from mmengine.registry import init_default_scope | |
from mmseg.models import BaseSegmentor | |
from mmseg.registry import MODELS | |
from mmseg.structures import SegDataSample | |
import os | |
import json | |
try: | |
from mmengine.analysis import get_model_complexity_info | |
from mmengine.analysis.print_helper import _format_size | |
except ImportError: | |
raise ImportError('Please upgrade mmengine >= 0.6.0 to use this script.') | |
from fvcore.nn import FlopCountAnalysis | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Get the FLOPs of a segmentor') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=[512, 512], | |
help='input image size') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
def inference(args: argparse.Namespace, logger: MMLogger) -> dict: | |
config_name = Path(args.config) | |
if not config_name.exists(): | |
logger.error(f'Config file {config_name} does not exist') | |
cfg: Config = Config.fromfile(config_name) | |
cfg.work_dir = tempfile.TemporaryDirectory().name | |
cfg.log_level = 'WARN' | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
init_default_scope(cfg.get('scope', 'mmseg')) | |
if len(args.shape) == 1: | |
input_shape = (3, args.shape[0], args.shape[0]) | |
elif len(args.shape) == 2: | |
input_shape = (3, ) + tuple(args.shape) | |
else: | |
raise ValueError('invalid input shape') | |
result = {} | |
model: BaseSegmentor = MODELS.build(cfg.model) | |
if hasattr(model, 'auxiliary_head'): | |
model.auxiliary_head = None | |
if torch.cuda.is_available(): | |
model.cuda() | |
model = revert_sync_batchnorm(model) | |
result['ori_shape'] = input_shape[-2:] | |
result['pad_shape'] = input_shape[-2:] | |
data_batch = { | |
'inputs': [torch.rand(input_shape)], | |
'data_samples': [SegDataSample(metainfo=result)] | |
} | |
data = model.data_preprocessor(data_batch) | |
model.eval() | |
if cfg.model.decode_head.type in ['MaskFormerHead', 'Mask2FormerHead']: | |
# TODO: Support MaskFormer and Mask2Former | |
raise NotImplementedError('MaskFormer and Mask2Former are not ' | |
'supported yet.') | |
if hasattr(model, 'module'): | |
all_cfgs = model.module.backbone.all_cfgs | |
else: | |
all_cfgs = model.backbone.all_cfgs | |
stitch_results = {} | |
for cfg_id in all_cfgs: | |
if hasattr(model, 'module'): | |
model.module.backbone.reset_stitch_id(cfg_id) | |
else: | |
model.backbone.reset_stitch_id(cfg_id) | |
flops = FlopCountAnalysis(model, torch.randn([1]+list(input_shape)).cuda()).total() | |
stitch_results[cfg_id] = flops | |
save_dir = './model_flops' | |
if not os.path.exists(save_dir): | |
os.mkdir(save_dir) | |
config_name = args.config.split('/')[-1].split('.')[0] | |
with open(os.path.join(save_dir, f'snnet_flops_{config_name}.json'), 'w+') as f: | |
json.dump(stitch_results, f, indent=4) | |
def main(): | |
args = parse_args() | |
logger = MMLogger.get_instance(name='MMLogger') | |
inference(args, logger) | |
if __name__ == '__main__': | |
main() | |