Spaces:
Runtime error
Runtime error
# dataset settings | |
dataset_type = 'LoveDADataset' | |
data_root = 'data/loveDA' | |
crop_size = (512, 512) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict( | |
type='RandomResize', | |
scale=(2048, 512), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='PackSegInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(1024, 1024), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict(type='PackSegInputs') | |
] | |
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] | |
tta_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict( | |
type='TestTimeAug', | |
transforms=[ | |
[ | |
dict(type='Resize', scale_factor=r, keep_ratio=True) | |
for r in img_ratios | |
], | |
[ | |
dict(type='RandomFlip', prob=0., direction='horizontal'), | |
dict(type='RandomFlip', prob=1., direction='horizontal') | |
], [dict(type='LoadAnnotations')], [dict(type='PackSegInputs')] | |
]) | |
] | |
train_dataloader = dict( | |
batch_size=4, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='InfiniteSampler', shuffle=True), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
data_prefix=dict( | |
img_path='img_dir/train', seg_map_path='ann_dir/train'), | |
pipeline=train_pipeline)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'), | |
pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) | |
test_evaluator = val_evaluator | |