Spaces:
Runtime error
Runtime error
_base_ = [ | |
'../_base_/models/cgnet.py', '../_base_/datasets/cityscapes.py', | |
'../_base_/default_runtime.py' | |
] | |
# optimizer | |
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005) | |
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) | |
# learning policy | |
param_scheduler = [ | |
dict( | |
type='PolyLR', | |
eta_min=1e-4, | |
power=0.9, | |
by_epoch=False, | |
begin=0, | |
end=60000) | |
] | |
# runtime settings | |
total_iters = 60000 | |
train_cfg = dict( | |
type='IterBasedTrainLoop', max_iters=total_iters, val_interval=4000) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=50), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=4000), | |
sampler_seed=dict(type='DistSamplerSeedHook')) | |
crop_size = (680, 680) | |
data_preprocessor = dict(size=crop_size) | |
model = dict(data_preprocessor=data_preprocessor) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict( | |
type='RandomResize', | |
scale=(2048, 1024), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=crop_size), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackSegInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 1024), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict(type='LoadAnnotations'), | |
dict(type='PackSegInputs') | |
] | |
train_dataloader = dict( | |
batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) | |
val_dataloader = dict( | |
batch_size=1, num_workers=4, dataset=dict(pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |