Spaces:
Runtime error
Runtime error
_base_ = [ | |
'../_base_/models/deeplabv3_r50-d8.py', '../_base_/default_runtime.py', | |
'../_base_/schedules/schedule_40k.py' | |
] | |
crop_size = (512, 1024) | |
data_preprocessor = dict(size=crop_size) | |
model = dict(data_preprocessor=data_preprocessor) | |
# dataset settings | |
dataset_type = 'DSDLSegDataset' | |
data_root = 'data/CityScapes' | |
img_prefix = 'raw/CityScapes' | |
train_ann = 'dsdl/dsdl_SemSeg_full/set-train/train.yaml' | |
val_ann = 'dsdl/dsdl_SemSeg_full/set-val/val.yaml' | |
used_labels = [ | |
'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic_light', | |
'traffic_sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', | |
'truck', 'bus', 'train', 'motorcycle', 'bicycle' | |
] | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations'), | |
dict( | |
type='RandomResize', | |
scale=(2048, 1024), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='PackSegInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 1024), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict(type='LoadAnnotations'), | |
dict(type='PackSegInputs') | |
] | |
train_dataloader = dict( | |
batch_size=2, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='InfiniteSampler', shuffle=True), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
data_prefix=dict(img_path=img_prefix, seg_map_path=img_prefix), | |
ann_file=train_ann, | |
used_labels=used_labels, | |
pipeline=train_pipeline)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
data_prefix=dict(img_path=img_prefix, seg_map_path=img_prefix), | |
ann_file=val_ann, | |
used_labels=used_labels, | |
pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) | |
test_evaluator = val_evaluator | |