Spaces:
Runtime error
Runtime error
Collections: | |
- Name: KNet | |
License: Apache License 2.0 | |
Metadata: | |
Training Data: | |
- ADE20K | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
README: configs/knet/README.md | |
Frameworks: | |
- PyTorch | |
Models: | |
- Name: knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 43.6 | |
mIoU(ms+flip): 45.12 | |
Config: configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-50-D8 | |
- KNet | |
- FCN | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 7.01 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |
- Name: knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 44.18 | |
mIoU(ms+flip): 45.58 | |
Config: configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-50-D8 | |
- KNet | |
- PSPNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 6.98 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |
- Name: knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 45.06 | |
mIoU(ms+flip): 46.11 | |
Config: configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-50-D8 | |
- KNet | |
- DeepLabV3 | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 7.42 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |
- Name: knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 43.45 | |
mIoU(ms+flip): 44.07 | |
Config: configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-50-D8 | |
- KNet | |
- UperNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 7.34 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |
- Name: knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 45.84 | |
mIoU(ms+flip): 46.27 | |
Config: configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-T | |
- KNet | |
- UperNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 7.57 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |
- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 52.05 | |
mIoU(ms+flip): 53.24 | |
Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-L | |
- KNet | |
- UperNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 13.5 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |
- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640 | |
In Collection: KNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 52.21 | |
mIoU(ms+flip): 53.34 | |
Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-L | |
- KNet | |
- UperNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 13.54 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json | |
Paper: | |
Title: 'K-Net: Towards Unified Image Segmentation' | |
URL: https://arxiv.org/abs/2106.14855 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 | |
Framework: PyTorch | |