HubHop
update
412c852
raw
history blame
24.9 kB
Collections:
- Name: OCRNet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
- '# HRNet backbone'
- '# ResNet backbone'
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
README: configs/ocrnet/README.md
Frameworks:
- PyTorch
Models:
- Name: ocrnet_hr18s_4xb2-40k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 76.61
mIoU(ms+flip): 78.01
Config: configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x A100 GPUS
Memory (GB): 3.5
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb2-40k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 77.72
mIoU(ms+flip): 79.49
Config: configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 4.7
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb2-40k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 80.58
mIoU(ms+flip): 81.79
Config: configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 8.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18s_4xb2-80k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 77.16
mIoU(ms+flip): 78.66
Config: configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb2-80k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 78.57
mIoU(ms+flip): 80.46
Config: configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb2-80k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 80.7
mIoU(ms+flip): 81.87
Config: configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18s_4xb2-160k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 78.45
mIoU(ms+flip): 79.97
Config: configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb2-160k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 79.47
mIoU(ms+flip): 80.91
Config: configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb2-160k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# HRNet backbone'
Metrics:
mIoU: 81.35
mIoU(ms+flip): 82.7
Config: configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py
Metadata:
Training Data: '# HRNet backbone'
Batch Size: 8
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# ResNet backbone'
Metrics:
mIoU: 80.09
Config: configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: '# ResNet backbone'
Batch Size: 8
Architecture:
- R-101-D8
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# ResNet backbone'
Metrics:
mIoU: 80.3
Config: configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: '# ResNet backbone'
Batch Size: 16
Architecture:
- R-101-D8
- OCRNet
Training Resources: 8x V100 GPUS
Memory (GB): 8.8
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: '# ResNet backbone'
Metrics:
mIoU: 80.81
Config: configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: '# ResNet backbone'
Batch Size: 16
Architecture:
- R-101-D8
- OCRNet
Training Resources: 8x V100 GPUS
Memory (GB): 8.8
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 35.06
mIoU(ms+flip): 35.8
Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 6.7
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 37.79
mIoU(ms+flip): 39.16
Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 7.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb4-80k_ade20k-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.0
mIoU(ms+flip): 44.3
Config: configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 11.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 37.19
mIoU(ms+flip): 38.4
Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.32
mIoU(ms+flip): 40.8
Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb4-160k_ade20k-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.25
mIoU(ms+flip): 44.88
Config: configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18s_4xb4-20k_voc12aug-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 71.7
mIoU(ms+flip): 73.84
Config: configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 3.5
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb4-20k_voc12aug-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.75
mIoU(ms+flip): 77.11
Config: configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 4.7
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb4-20k_voc12aug-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.72
mIoU(ms+flip): 79.87
Config: configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Memory (GB): 8.1
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18s_4xb4-40k_voc12aug-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 72.76
mIoU(ms+flip): 74.6
Config: configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- HRNetV2p-W18-Small
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr18_4xb4-40k_voc12aug-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.98
mIoU(ms+flip): 77.4
Config: configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- HRNetV2p-W18
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch
- Name: ocrnet_hr48_4xb4-40k_voc12aug-512x512
In Collection: OCRNet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.14
mIoU(ms+flip): 79.71
Config: configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- HRNetV2p-W48
- OCRNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json
Paper:
Title: Object-Contextual Representations for Semantic Segmentation
URL: https://arxiv.org/abs/1909.11065
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
Framework: PyTorch