HubHop
update
412c852
raw
history blame
5.11 kB
Models:
- Name: fpn_poolformer_s12_8xb4-40k_ade20k-512x512
In Collection: FPN
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 36.68
Config: configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 32
Architecture:
- PoolFormer-S12
- FPN
Training Resources: 8x V100 GPUS
Memory (GB): 4.17
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json
Paper:
Title: MetaFormer is Actually What You Need for Vision
URL: https://arxiv.org/abs/2111.11418
Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198
Framework: PyTorch
- Name: fpn_poolformer_s24_8xb4-40k_ade20k-512x512
In Collection: FPN
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 40.12
Config: configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 32
Architecture:
- PoolFormer-S24
- FPN
Training Resources: 8x V100 GPUS
Memory (GB): 5.47
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json
Paper:
Title: MetaFormer is Actually What You Need for Vision
URL: https://arxiv.org/abs/2111.11418
Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198
Framework: PyTorch
- Name: fpn_poolformer_s36_8xb4-40k_ade20k-512x512
In Collection: FPN
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.61
Config: configs/poolformer/fpn_poolformer_s36_8xb4-40k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 32
Architecture:
- PoolFormer-S36
- FPN
Training Resources: 8x V100 GPUS
Memory (GB): 6.77
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json
Paper:
Title: MetaFormer is Actually What You Need for Vision
URL: https://arxiv.org/abs/2111.11418
Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198
Framework: PyTorch
- Name: fpn_poolformer_m36_8xb4-40k_ade20k-512x512
In Collection: FPN
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.95
Config: configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 32
Architecture:
- PoolFormer-M36
- FPN
Training Resources: 8x V100 GPUS
Memory (GB): 8.59
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json
Paper:
Title: MetaFormer is Actually What You Need for Vision
URL: https://arxiv.org/abs/2111.11418
Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198
Framework: PyTorch
- Name: fpn_poolformer_m48_8xb4-40k_ade20k-512x512
In Collection: FPN
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.43
Config: configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 32
Architecture:
- PoolFormer-M48
- FPN
Training Resources: 8x V100 GPUS
Memory (GB): 10.48
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json
Paper:
Title: MetaFormer is Actually What You Need for Vision
URL: https://arxiv.org/abs/2111.11418
Code: https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198
Framework: PyTorch