Spaces:
Runtime error
Runtime error
_base_ = ['./segformer_mit-b0_8xb2-160k_ade20k-512x512.py'] | |
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth' # noqa | |
# dataset settings | |
crop_size = (640, 640) | |
data_preprocessor = dict(size=crop_size) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict( | |
type='RandomResize', | |
scale=(2048, 640), | |
ratio_range=(0.5, 2.0), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PhotoMetricDistortion'), | |
dict(type='PackSegInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(2048, 640), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict(type='LoadAnnotations', reduce_zero_label=True), | |
dict(type='PackSegInputs') | |
] | |
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | |
val_dataloader = dict(batch_size=1, dataset=dict(pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |
# model settings | |
model = dict( | |
data_preprocessor=data_preprocessor, | |
backbone=dict( | |
init_cfg=dict(type='Pretrained', checkpoint=checkpoint), | |
embed_dims=64, | |
num_heads=[1, 2, 5, 8], | |
num_layers=[3, 6, 40, 3]), | |
decode_head=dict(in_channels=[64, 128, 320, 512])) | |