snnetv2-semantic-segmentation / configs /segmenter /segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py
HubHop
update
412c852
raw
history blame
1.08 kB
_base_ = [
'../_base_/models/segmenter_vit-b16_mask.py',
'../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
crop_size = (640, 640)
data_preprocessor = dict(size=crop_size)
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_large_p16_384_20220308-d4efb41d.pth' # noqa
model = dict(
data_preprocessor=data_preprocessor,
pretrained=checkpoint,
backbone=dict(
type='VisionTransformer',
img_size=(640, 640),
embed_dims=1024,
num_layers=24,
num_heads=16),
decode_head=dict(
type='SegmenterMaskTransformerHead',
in_channels=1024,
channels=1024,
num_heads=16,
embed_dims=1024),
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(608, 608)))
optimizer = dict(lr=0.001, weight_decay=0.0)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
train_dataloader = dict(
# num_gpus: 8 -> batch_size: 8
batch_size=1)
val_dataloader = dict(batch_size=1)