snnetv2-semantic-segmentation / configs /segmenter /segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py
HubHop
update
412c852
raw
history blame
1.18 kB
_base_ = [
'../_base_/models/segmenter_vit-b16_mask.py',
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
data_preprocessor = dict(size=crop_size)
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_small_p16_384_20220308-410f6037.pth' # noqa
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
model = dict(
data_preprocessor=data_preprocessor,
pretrained=checkpoint,
backbone=dict(
img_size=(512, 512),
embed_dims=384,
num_heads=6,
),
decode_head=dict(
type='SegmenterMaskTransformerHead',
in_channels=384,
channels=384,
num_classes=150,
num_layers=2,
num_heads=6,
embed_dims=384,
dropout_ratio=0.0,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
optimizer = dict(lr=0.001, weight_decay=0.0)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
train_dataloader = dict(
# num_gpus: 8 -> batch_size: 8
batch_size=1)
val_dataloader = dict(batch_size=1)