Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/segmenter
/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py
_base_ = [ | |
'../_base_/models/segmenter_vit-b16_mask.py', | |
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', | |
'../_base_/schedules/schedule_160k.py' | |
] | |
crop_size = (512, 512) | |
data_preprocessor = dict(size=crop_size) | |
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_small_p16_384_20220308-410f6037.pth' # noqa | |
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) | |
model = dict( | |
data_preprocessor=data_preprocessor, | |
pretrained=checkpoint, | |
backbone=dict( | |
img_size=(512, 512), | |
embed_dims=384, | |
num_heads=6, | |
), | |
decode_head=dict( | |
type='SegmenterMaskTransformerHead', | |
in_channels=384, | |
channels=384, | |
num_classes=150, | |
num_layers=2, | |
num_heads=6, | |
embed_dims=384, | |
dropout_ratio=0.0, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))) | |
optimizer = dict(lr=0.001, weight_decay=0.0) | |
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) | |
train_dataloader = dict( | |
# num_gpus: 8 -> batch_size: 8 | |
batch_size=1) | |
val_dataloader = dict(batch_size=1) | |