Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmseg.registry import MODELS | |
from ..utils import SelfAttentionBlock as _SelfAttentionBlock | |
from .decode_head import BaseDecodeHead | |
class SelfAttentionBlock(_SelfAttentionBlock): | |
"""Self-Attention Module. | |
Args: | |
in_channels (int): Input channels of key/query feature. | |
channels (int): Output channels of key/query transform. | |
conv_cfg (dict | None): Config of conv layers. | |
norm_cfg (dict | None): Config of norm layers. | |
act_cfg (dict | None): Config of activation layers. | |
""" | |
def __init__(self, in_channels, channels, conv_cfg, norm_cfg, act_cfg): | |
super().__init__( | |
key_in_channels=in_channels, | |
query_in_channels=in_channels, | |
channels=channels, | |
out_channels=in_channels, | |
share_key_query=False, | |
query_downsample=None, | |
key_downsample=None, | |
key_query_num_convs=2, | |
key_query_norm=True, | |
value_out_num_convs=1, | |
value_out_norm=False, | |
matmul_norm=True, | |
with_out=False, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.output_project = self.build_project( | |
in_channels, | |
in_channels, | |
num_convs=1, | |
use_conv_module=True, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
def forward(self, x): | |
"""Forward function.""" | |
context = super().forward(x, x) | |
return self.output_project(context) | |
class ISAHead(BaseDecodeHead): | |
"""Interlaced Sparse Self-Attention for Semantic Segmentation. | |
This head is the implementation of `ISA | |
<https://arxiv.org/abs/1907.12273>`_. | |
Args: | |
isa_channels (int): The channels of ISA Module. | |
down_factor (tuple[int]): The local group size of ISA. | |
""" | |
def __init__(self, isa_channels, down_factor=(8, 8), **kwargs): | |
super().__init__(**kwargs) | |
self.down_factor = down_factor | |
self.in_conv = ConvModule( | |
self.in_channels, | |
self.channels, | |
3, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.global_relation = SelfAttentionBlock( | |
self.channels, | |
isa_channels, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.local_relation = SelfAttentionBlock( | |
self.channels, | |
isa_channels, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.out_conv = ConvModule( | |
self.channels * 2, | |
self.channels, | |
1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def forward(self, inputs): | |
"""Forward function.""" | |
x_ = self._transform_inputs(inputs) | |
x = self.in_conv(x_) | |
residual = x | |
n, c, h, w = x.size() | |
loc_h, loc_w = self.down_factor # size of local group in H- and W-axes | |
glb_h, glb_w = math.ceil(h / loc_h), math.ceil(w / loc_w) | |
pad_h, pad_w = glb_h * loc_h - h, glb_w * loc_w - w | |
if pad_h > 0 or pad_w > 0: # pad if the size is not divisible | |
padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2) | |
x = F.pad(x, padding) | |
# global relation | |
x = x.view(n, c, glb_h, loc_h, glb_w, loc_w) | |
# do permutation to gather global group | |
x = x.permute(0, 3, 5, 1, 2, 4) # (n, loc_h, loc_w, c, glb_h, glb_w) | |
x = x.reshape(-1, c, glb_h, glb_w) | |
# apply attention within each global group | |
x = self.global_relation(x) # (n * loc_h * loc_w, c, glb_h, glb_w) | |
# local relation | |
x = x.view(n, loc_h, loc_w, c, glb_h, glb_w) | |
# do permutation to gather local group | |
x = x.permute(0, 4, 5, 3, 1, 2) # (n, glb_h, glb_w, c, loc_h, loc_w) | |
x = x.reshape(-1, c, loc_h, loc_w) | |
# apply attention within each local group | |
x = self.local_relation(x) # (n * glb_h * glb_w, c, loc_h, loc_w) | |
# permute each pixel back to its original position | |
x = x.view(n, glb_h, glb_w, c, loc_h, loc_w) | |
x = x.permute(0, 3, 1, 4, 2, 5) # (n, c, glb_h, loc_h, glb_w, loc_w) | |
x = x.reshape(n, c, glb_h * loc_h, glb_w * loc_w) | |
if pad_h > 0 or pad_w > 0: # remove padding | |
x = x[:, :, pad_h // 2:pad_h // 2 + h, pad_w // 2:pad_w // 2 + w] | |
x = self.out_conv(torch.cat([x, residual], dim=1)) | |
out = self.cls_seg(x) | |
return out | |