HubHop
update
412c852
raw
history blame
30.6 kB
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, build_norm_layer
from mmcv.cnn.bricks.transformer import BaseTransformerLayer
from mmcv.ops import point_sample
from mmengine.dist import all_reduce
from mmengine.model.weight_init import (caffe2_xavier_init, normal_init,
trunc_normal_)
from mmengine.runner.checkpoint import CheckpointLoader, load_state_dict
from mmengine.structures import InstanceData
from torch import Tensor
from torch.nn import functional as F
from mmseg.models.backbones.vit import TransformerEncoderLayer
from mmseg.registry import MODELS
from mmseg.utils import (ConfigType, MatchMasks, SampleList,
seg_data_to_instance_data)
from ..utils import (MLP, LayerNorm2d, PatchEmbed, cross_attn_layer,
get_uncertain_point_coords_with_randomness, resize)
from .decode_head import BaseDecodeHead
class MLPMaskDecoder(nn.Module):
"""Module for decoding query and visual features with MLP layers to
generate the attention biases and the mask proposals."""
def __init__(
self,
*,
in_channels: int,
total_heads: int = 1,
total_layers: int = 1,
embed_channels: int = 256,
mlp_channels: int = 256,
mlp_num_layers: int = 3,
rescale_attn_bias: bool = False,
):
super().__init__()
self.total_heads = total_heads
self.total_layers = total_layers
dense_affine_func = partial(nn.Conv2d, kernel_size=1)
# Query Branch
self.query_mlp = MLP(in_channels, mlp_channels, embed_channels,
mlp_num_layers)
# Pixel Branch
self.pix_mlp = MLP(
in_channels,
mlp_channels,
embed_channels,
mlp_num_layers,
affine_func=dense_affine_func,
)
# Attention Bias Branch
self.attn_mlp = MLP(
in_channels,
mlp_channels,
embed_channels * self.total_heads * self.total_layers,
mlp_num_layers,
affine_func=dense_affine_func,
)
if rescale_attn_bias:
self.bias_scaling = nn.Linear(1, 1)
else:
self.bias_scaling = nn.Identity()
def forward(self, query: torch.Tensor,
x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""Forward function.
Args:
query (Tensor): Query Tokens [B,N,C].
x (Tensor): Visual features [B,C,H,W]
Return:
mask_preds (Tensor): Mask proposals.
attn_bias (List[Tensor]): List of attention bias.
"""
query = self.query_mlp(query)
pix = self.pix_mlp(x)
b, c, h, w = pix.shape
# preidict mask
mask_preds = torch.einsum('bqc,bchw->bqhw', query, pix)
# generate attn bias
attn = self.attn_mlp(x)
attn = attn.reshape(b, self.total_layers, self.total_heads, c, h, w)
attn_bias = torch.einsum('bqc,blnchw->blnqhw', query, attn)
attn_bias = self.bias_scaling(attn_bias[..., None]).squeeze(-1)
attn_bias = attn_bias.chunk(self.total_layers, dim=1)
attn_bias = [attn.squeeze(1) for attn in attn_bias]
return mask_preds, attn_bias
class SideAdapterNetwork(nn.Module):
"""Side Adapter Network for predicting mask proposals and attention bias.
Args:
in_channels (int): Number of input channels. Default: 3.
clip_channels (int): Number of channels of visual features.
Default: 768.
embed_dims (int): embedding dimension. Default: 240.
patch_size (int): The patch size. Default: 16.
patch_bias (bool): Whether use bias in patch embedding.
Default: True.
num_queries (int): Number of queries for mask proposals.
Default: 100.
fusion_index (List[int]): The layer number of the encode
transformer to fuse with the CLIP feature.
Default: [0, 1, 2, 3].
cfg_encoder (ConfigType): Configs for the encode layers.
cfg_decoder (ConfigType): Configs for the decode layers.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
"""
def __init__(
self,
in_channels: int = 3,
clip_channels: int = 768,
embed_dims: int = 240,
patch_size: int = 16,
patch_bias: bool = True,
num_queries: int = 100,
fusion_index: list = [0, 1, 2, 3],
cfg_encoder: ConfigType = ...,
cfg_decoder: ConfigType = ...,
norm_cfg: dict = dict(type='LN'),
):
super().__init__()
self.patch_embed = PatchEmbed(
in_channels=in_channels,
embed_dims=embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
padding=0,
input_size=(640, 640),
bias=patch_bias,
norm_cfg=None,
init_cfg=None,
)
ori_h, ori_w = self.patch_embed.init_out_size
num_patches = ori_h * ori_w
self.pos_embed = nn.Parameter(
torch.randn(1, num_patches, embed_dims) * .02)
self.query_pos_embed = nn.Parameter(
torch.zeros(1, num_queries, embed_dims))
self.query_embed = nn.Parameter(
torch.zeros(1, num_queries, embed_dims))
encode_layers = []
for i in range(cfg_encoder.num_encode_layer):
encode_layers.append(
TransformerEncoderLayer(
embed_dims=embed_dims,
num_heads=cfg_encoder.num_heads,
feedforward_channels=cfg_encoder.mlp_ratio * embed_dims,
norm_cfg=norm_cfg))
self.encode_layers = nn.ModuleList(encode_layers)
conv_clips = []
for i in range(len(fusion_index)):
conv_clips.append(
nn.Sequential(
LayerNorm2d(clip_channels),
ConvModule(
clip_channels,
embed_dims,
kernel_size=1,
norm_cfg=None,
act_cfg=None)))
self.conv_clips = nn.ModuleList(conv_clips)
self.fusion_index = fusion_index
self.mask_decoder = MLPMaskDecoder(
in_channels=embed_dims,
total_heads=cfg_decoder.num_heads,
total_layers=cfg_decoder.num_layers,
embed_channels=cfg_decoder.embed_channels,
mlp_channels=cfg_decoder.mlp_channels,
mlp_num_layers=cfg_decoder.num_mlp,
rescale_attn_bias=cfg_decoder.rescale)
def init_weights(self):
trunc_normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.query_embed, std=0.02)
nn.init.normal_(self.query_pos_embed, std=0.02)
for i in range(len(self.conv_clips)):
caffe2_xavier_init(self.conv_clips[i][1].conv)
def fuse_clip(self, fused_index: int, x: torch.Tensor,
clip_feature: torch.Tensor, hwshape: Tuple[int,
int], L: int):
"""Fuse CLIP feature and visual tokens."""
fused_clip = (resize(
self.conv_clips[fused_index](clip_feature.contiguous()),
size=hwshape,
mode='bilinear',
align_corners=False)).permute(0, 2, 3, 1).reshape(x[:, -L:,
...].shape)
x = torch.cat([x[:, :-L, ...], x[:, -L:, ...] + fused_clip], dim=1)
return x
def encode_feature(self, image: torch.Tensor,
clip_features: List[torch.Tensor],
deep_supervision_idxs: List[int]) -> List[List]:
"""Encode images by a lightweight vision transformer."""
assert len(self.fusion_index) == len(clip_features)
x, hwshape = self.patch_embed(image)
ori_h, ori_w = self.patch_embed.init_out_size
pos_embed = self.pos_embed
if self.pos_embed.shape[1] != x.shape[1]:
# resize the position embedding
pos_embed = (
resize(
self.pos_embed.reshape(1, ori_h, ori_w,
-1).permute(0, 3, 1, 2),
size=hwshape,
mode='bicubic',
align_corners=False,
).flatten(2).permute(0, 2, 1))
pos_embed = torch.cat([
self.query_pos_embed.expand(pos_embed.shape[0], -1, -1), pos_embed
],
dim=1)
x = torch.cat([self.query_embed.expand(x.shape[0], -1, -1), x], dim=1)
x = x + pos_embed
L = hwshape[0] * hwshape[1]
fused_index = 0
if self.fusion_index[fused_index] == 0:
x = self.fuse_clip(fused_index, x, clip_features[0][0], hwshape, L)
fused_index += 1
outs = []
for index, block in enumerate(self.encode_layers, start=1):
x = block(x)
if index < len(self.fusion_index
) and index == self.fusion_index[fused_index]:
x = self.fuse_clip(fused_index, x,
clip_features[fused_index][0], hwshape, L)
fused_index += 1
x_query = x[:, :-L, ...]
x_feat = x[:, -L:, ...].permute(0, 2, 1)\
.reshape(x.shape[0], x.shape[-1], hwshape[0], hwshape[1])
if index in deep_supervision_idxs or index == len(
self.encode_layers):
outs.append({'query': x_query, 'x': x_feat})
if index < len(self.encode_layers):
x = x + pos_embed
return outs
def decode_feature(self, features):
mask_embeds = []
attn_biases = []
for feature in features:
mask_embed, attn_bias = self.mask_decoder(**feature)
mask_embeds.append(mask_embed)
attn_biases.append(attn_bias)
return mask_embeds, attn_biases
def forward(
self, image: torch.Tensor, clip_features: List[torch.Tensor],
deep_supervision_idxs: List[int]
) -> Tuple[List[torch.Tensor], List[List[torch.Tensor]]]:
"""Forward function."""
features = self.encode_feature(image, clip_features,
deep_supervision_idxs)
mask_embeds, attn_biases = self.decode_feature(features)
return mask_embeds, attn_biases
class RecWithAttnbias(nn.Module):
"""Mask recognition module by applying the attention biases to rest deeper
CLIP layers.
Args:
sos_token_format (str): The format of sos token. It should be
chosen from ["cls_token", "learnable_token", "pos_embedding"].
Default: 'cls_token'.
sos_token_num (int): Number of sos token. It should be equal to
the number of quries. Default: 100.
num_layers (int): Number of rest CLIP layers for mask recognition.
Default: 3.
cross_attn (bool): Whether use cross attention to update sos token.
Default: False.
embed_dims (int): The feature dimension of CLIP layers.
Default: 768.
num_heads (int): Parallel attention heads of CLIP layers.
Default: 768.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
Default: 4.
qkv_bias (bool): Whether to use bias in multihead-attention.
Default: True.
out_dims (int): Number of channels of the output mask proposals.
It should be equal to the out_dims of text_encoder.
Default: 512.
final_norm (True): Whether use norm layer for sos token.
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
frozen_exclude (List): List of parameters that are not to be frozen.
"""
def __init__(self,
sos_token_format: str = 'cls_token',
sos_token_num: int = 100,
num_layers: int = 3,
cross_attn: bool = False,
embed_dims: int = 768,
num_heads: int = 12,
mlp_ratio: int = 4,
num_fcs: int = 2,
qkv_bias: bool = True,
out_dims: int = 512,
final_norm: bool = True,
act_cfg: dict = dict(type='GELU'),
norm_cfg: dict = dict(type='LN'),
frozen_exclude: List = []):
super().__init__()
assert sos_token_format in [
'cls_token', 'learnable_token', 'pos_embedding'
]
self.sos_token_format = sos_token_format
self.sos_token_num = sos_token_num
self.frozen_exclude = frozen_exclude
self.cross_attn = cross_attn
self.num_layers = num_layers
self.num_heads = num_heads
if sos_token_format in ['learnable_token', 'pos_embedding']:
self.sos_token = nn.Parameter(
torch.randn(sos_token_num, 1, self.proj.shape[0]))
self.frozen.append('sos_token')
layers = []
for i in range(num_layers):
layers.append(
BaseTransformerLayer(
attn_cfgs=dict(
type='MultiheadAttention',
embed_dims=embed_dims,
num_heads=num_heads,
batch_first=False,
bias=qkv_bias),
ffn_cfgs=dict(
type='FFN',
embed_dims=embed_dims,
feedforward_channels=mlp_ratio * embed_dims,
act_cfg=act_cfg),
operation_order=('norm', 'self_attn', 'norm', 'ffn')))
self.layers = nn.ModuleList(layers)
self.ln_post = build_norm_layer(norm_cfg, embed_dims)[1]
self.proj = nn.Linear(embed_dims, out_dims, bias=False)
self.final_norm = final_norm
self._freeze()
def init_weights(self, rec_state_dict):
if hasattr(self, 'sos_token'):
normal_init(self.sos_token, std=0.02)
if rec_state_dict is not None:
load_state_dict(self, rec_state_dict, strict=False, logger=None)
else:
super().init_weights()
def _freeze(self):
if 'all' in self.frozen_exclude:
return
for name, param in self.named_parameters():
if not any([exclude in name for exclude in self.frozen_exclude]):
param.requires_grad = False
def _build_attn_biases(self, attn_biases, target_shape):
formatted_attn_biases = []
for attn_bias in attn_biases:
# convert it to proper format: N*num_head,L,L
# attn_bias: [N, num_head/1, num_sos,H,W]
n, num_head, num_sos, h, w = attn_bias.shape
# reshape and downsample
attn_bias = F.adaptive_max_pool2d(
attn_bias.reshape(n, num_head * num_sos, h, w),
output_size=target_shape)
attn_bias = attn_bias.reshape(n, num_head, num_sos, *target_shape)
true_num_head = self.num_heads
assert (num_head == 1 or num_head
== true_num_head), f'num_head={num_head} is not supported.'
if num_head == 1:
attn_bias = attn_bias.repeat(1, true_num_head, 1, 1, 1)
attn_bias = attn_bias.reshape(n * true_num_head, num_sos, -1)
L = attn_bias.shape[-1]
if self.cross_attn:
# [n*num_head, num_sos, L]
formatted_attn_biases.append(attn_bias)
else:
# [n*num_head, num_sos+1+L, num_sos+1+L]
new_attn_bias = attn_bias.new_zeros(num_sos + 1 + L,
num_sos + 1 + L)
new_attn_bias[:, :num_sos] = -100
new_attn_bias[torch.arange(num_sos), torch.arange(num_sos)] = 0
new_attn_bias[:num_sos, num_sos] = -100
new_attn_bias = (
new_attn_bias[None, ...].expand(n * true_num_head, -1,
-1).clone())
new_attn_bias[..., :num_sos, -L:] = attn_bias
formatted_attn_biases.append(new_attn_bias)
if len(formatted_attn_biases) == 1:
formatted_attn_biases = [
formatted_attn_biases[0] for _ in range(self.num_layers)
]
return formatted_attn_biases
def forward(self, bias: List[Tensor], feature: List[Tensor]):
"""Forward function to recognize the category of masks
Args:
bias (List[Tensor]): Attention bias for transformer layers
feature (List[Tensor]): Output of the image encoder,
including cls_token and img_feature.
"""
cls_token = feature[1].unsqueeze(0)
img_feature = feature[0]
b, c, h, w = img_feature.shape
# construct clip shadow features
x = torch.cat(
[cls_token,
img_feature.reshape(b, c, -1).permute(2, 0, 1)])
# construct sos token
if self.sos_token_format == 'cls_token':
sos_token = cls_token.repeat(self.sos_token_num, 1, 1)
elif self.sos_token_format == 'learnable_token':
sos_token = self.sos_token.expand(-1, b, -1)
elif self.sos_token_format == 'pos_embedding':
sos_token = self.sos_token.expand(-1, b, -1) + cls_token
# construct attn bias
attn_biases = self._build_attn_biases(bias, target_shape=(h, w))
if self.cross_attn:
for i, block in enumerate(self.layers):
if self.cross_attn:
sos_token = cross_attn_layer(
block,
sos_token,
x[1:, ],
attn_biases[i],
)
if i < len(self.layers) - 1:
x = block(x)
else:
x = torch.cat([sos_token, x], dim=0)
for i, block in enumerate(self.layers):
x = block(x, attn_masks=[attn_biases[i]])
sos_token = x[:self.sos_token_num]
sos_token = sos_token.permute(1, 0, 2) # LND -> NLD
sos_token = self.ln_post(sos_token)
sos_token = self.proj(sos_token)
if self.final_norm:
sos_token = F.normalize(sos_token, dim=-1)
return sos_token
@MODELS.register_module()
class SideAdapterCLIPHead(BaseDecodeHead):
"""Side Adapter Network (SAN) for open-vocabulary semantic segmentation
with pre-trained vision-language model.
This decode head is the implementation of `Side Adapter Network
for Open-Vocabulary Semantic Segmentation`
<https://arxiv.org/abs/2302.12242>.
Modified from https://github.com/MendelXu/SAN/blob/main/san/model/side_adapter/side_adapter.py # noqa:E501
Copyright (c) 2023 MendelXu.
Licensed under the MIT License
Args:
num_classes (int): the number of classes.
san_cfg (ConfigType): Configs for SideAdapterNetwork module
maskgen_cfg (ConfigType): Configs for RecWithAttnbias module
"""
def __init__(self, num_classes: int, san_cfg: ConfigType,
maskgen_cfg: ConfigType, deep_supervision_idxs: List[int],
train_cfg: ConfigType, **kwargs):
super().__init__(
in_channels=san_cfg.in_channels,
channels=san_cfg.embed_dims,
num_classes=num_classes,
**kwargs)
assert san_cfg.num_queries == maskgen_cfg.sos_token_num, \
'num_queries in san_cfg should be equal to sos_token_num ' \
'in maskgen_cfg'
del self.conv_seg
self.side_adapter_network = SideAdapterNetwork(**san_cfg)
self.rec_with_attnbias = RecWithAttnbias(**maskgen_cfg)
self.deep_supervision_idxs = deep_supervision_idxs
self.train_cfg = train_cfg
if train_cfg:
self.match_masks = MatchMasks(
num_points=train_cfg.num_points,
num_queries=san_cfg.num_queries,
num_classes=num_classes,
assigner=train_cfg.assigner)
def init_weights(self):
rec_state_dict = None
if isinstance(self.init_cfg, dict) and \
self.init_cfg.get('type') == 'Pretrained_Part':
checkpoint = CheckpointLoader.load_checkpoint(
self.init_cfg['checkpoint'], logger=None, map_location='cpu')
rec_state_dict = checkpoint.copy()
para_prefix = 'decode_head.rec_with_attnbias'
prefix_len = len(para_prefix) + 1
for k, v in checkpoint.items():
rec_state_dict.pop(k)
if para_prefix in k:
rec_state_dict[k[prefix_len:]] = v
self.side_adapter_network.init_weights()
self.rec_with_attnbias.init_weights(rec_state_dict)
def forward(self, inputs: Tuple[Tensor],
deep_supervision_idxs) -> Tuple[List]:
"""Forward function.
Args:
inputs (Tuple[Tensor]): A triplet including images,
list of multi-level visual features from image encoder and
class embeddings from text_encoder.
Returns:
mask_props (List[Tensor]): Mask proposals predicted by SAN.
mask_logits (List[Tensor]): Class logits of mask proposals.
"""
imgs, clip_feature, class_embeds = inputs
# predict mask proposals and attention bias
mask_props, attn_biases = self.side_adapter_network(
imgs, clip_feature, deep_supervision_idxs)
# mask recognition with attention bias
mask_embeds = [
self.rec_with_attnbias(att_bias, clip_feature[-1])
for att_bias in attn_biases
]
# Obtain class prediction of masks by comparing the similarity
# between the image token and the text embedding of class names.
mask_logits = [
torch.einsum('bqc,nc->bqn', mask_embed, class_embeds)
for mask_embed in mask_embeds
]
return mask_props, mask_logits
def predict(self, inputs: Tuple[Tensor], batch_img_metas: List[dict],
test_cfg: ConfigType) -> Tensor:
"""Forward function for prediction.
Args:
inputs (Tuple[Tensor]): Images, visual features from image encoder
and class embedding from text encoder.
batch_img_metas (dict): List Image info where each dict may also
contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
test_cfg (dict): The testing config.
Returns:
Tensor: Outputs segmentation logits map.
"""
mask_props, mask_logits = self.forward(inputs, [])
return self.predict_by_feat([mask_props[-1], mask_logits[-1]],
batch_img_metas)
def predict_by_feat(self, seg_logits: List[Tensor],
batch_img_metas: List[dict]) -> Tensor:
"""1. Transform a batch of mask proposals to the input shape.
2. Generate segmentation map with mask proposals and class logits.
"""
mask_pred = seg_logits[0]
cls_score = seg_logits[1]
if isinstance(batch_img_metas[0]['img_shape'], torch.Size):
# slide inference
size = batch_img_metas[0]['img_shape']
elif 'pad_shape' in batch_img_metas[0]:
size = batch_img_metas[0]['pad_shape'][:2]
else:
size = batch_img_metas[0]['img_shape']
# upsample mask
mask_pred = F.interpolate(
mask_pred, size=size, mode='bilinear', align_corners=False)
mask_cls = F.softmax(cls_score, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
seg_logits = torch.einsum('bqc,bqhw->bchw', mask_cls, mask_pred)
return seg_logits
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList,
train_cfg: ConfigType) -> dict:
"""Perform forward propagation and loss calculation of the decoder head
on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the upstream
network, each is a 4D-tensor.
batch_data_samples (List[:obj:`SegDataSample`]): The Data
Samples. It usually includes information such as
`gt_sem_seg`.
train_cfg (ConfigType): Training config.
Returns:
dict[str, Tensor]: a dictionary of loss components.
"""
# batch SegDataSample to InstanceDataSample
batch_gt_instances = seg_data_to_instance_data(self.ignore_index,
batch_data_samples)
# forward
all_mask_props, all_mask_logits = self.forward(
x, self.deep_supervision_idxs)
# loss
losses = self.loss_by_feat(all_mask_logits, all_mask_props,
batch_gt_instances)
return losses
def loss_by_feat(
self, all_cls_scores: Tensor, all_mask_preds: Tensor,
batch_gt_instances: List[InstanceData]) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_cls_scores (Tensor): Classification scores for all decoder
layers with shape (num_decoder, batch_size, num_queries,
cls_out_channels). Note `cls_out_channels` should includes
background.
all_mask_preds (Tensor): Mask scores for all decoder layers with
shape (num_decoder, batch_size, num_queries, h, w).
batch_gt_instances (list[obj:`InstanceData`]): each contains
``labels`` and ``masks``.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_dec_layers = len(all_cls_scores)
batch_gt_instances_list = [
batch_gt_instances for _ in range(num_dec_layers)
]
losses = []
for i in range(num_dec_layers):
cls_scores = all_cls_scores[i]
mask_preds = all_mask_preds[i]
# matching N mask predictions to K category labels
(labels, mask_targets, mask_weights,
avg_factor) = self.match_masks.get_targets(
cls_scores, mask_preds, batch_gt_instances_list[i])
cls_scores = cls_scores.flatten(0, 1)
labels = labels.flatten(0, 1)
num_total_masks = cls_scores.new_tensor([avg_factor],
dtype=torch.float)
all_reduce(num_total_masks, op='mean')
num_total_masks = max(num_total_masks, 1)
# extract positive ones
# shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w)
mask_preds = mask_preds[mask_weights > 0]
if mask_targets.shape[0] != 0:
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_preds.unsqueeze(1), None,
self.train_cfg.num_points,
self.train_cfg.oversample_ratio,
self.train_cfg.importance_sample_ratio)
# shape (num_total_gts, h, w)
# -> (num_total_gts, num_points)
mask_point_targets = point_sample(
mask_targets.unsqueeze(1).float(),
points_coords).squeeze(1)
# shape (num_queries, h, w) -> (num_queries, num_points)
mask_point_preds = point_sample(
mask_preds.unsqueeze(1), points_coords).squeeze(1)
if not isinstance(self.loss_decode, nn.ModuleList):
losses_decode = [self.loss_decode]
else:
losses_decode = self.loss_decode
loss = dict()
for loss_decode in losses_decode:
if 'loss_cls' in loss_decode.loss_name:
if loss_decode.loss_name == 'loss_cls_ce':
loss[loss_decode.loss_name] = loss_decode(
cls_scores, labels)
else:
assert False, "Only support 'CrossEntropyLoss' in" \
' classification loss'
elif 'loss_mask' in loss_decode.loss_name:
if mask_targets.shape[0] == 0:
loss[loss_decode.loss_name] = mask_preds.sum()
elif loss_decode.loss_name == 'loss_mask_ce':
loss[loss_decode.loss_name] = loss_decode(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks *
self.train_cfg.num_points)
elif loss_decode.loss_name == 'loss_mask_dice':
loss[loss_decode.loss_name] = loss_decode(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks)
else:
assert False, "Only support 'CrossEntropyLoss' and" \
" 'DiceLoss' in mask loss"
else:
assert False, "Only support for 'loss_cls' and 'loss_mask'"
losses.append(loss)
loss_dict = dict()
# loss from the last decoder layer
loss_dict.update(losses[-1])
# loss from other decoder layers
for i, loss in enumerate(losses[:-1]):
for k, v in loss.items():
loss_dict[f'd{self.deep_supervision_idxs[i]}.{k}'] = v
return loss_dict