Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmseg.registry import MODELS | |
from ..utils import resize | |
from .aspp_head import ASPPHead, ASPPModule | |
class DepthwiseSeparableASPPModule(ASPPModule): | |
"""Atrous Spatial Pyramid Pooling (ASPP) Module with depthwise separable | |
conv.""" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
for i, dilation in enumerate(self.dilations): | |
if dilation > 1: | |
self[i] = DepthwiseSeparableConvModule( | |
self.in_channels, | |
self.channels, | |
3, | |
dilation=dilation, | |
padding=dilation, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
class DepthwiseSeparableASPPHead(ASPPHead): | |
"""Encoder-Decoder with Atrous Separable Convolution for Semantic Image | |
Segmentation. | |
This head is the implementation of `DeepLabV3+ | |
<https://arxiv.org/abs/1802.02611>`_. | |
Args: | |
c1_in_channels (int): The input channels of c1 decoder. If is 0, | |
the no decoder will be used. | |
c1_channels (int): The intermediate channels of c1 decoder. | |
""" | |
def __init__(self, c1_in_channels, c1_channels, **kwargs): | |
super().__init__(**kwargs) | |
assert c1_in_channels >= 0 | |
self.aspp_modules = DepthwiseSeparableASPPModule( | |
dilations=self.dilations, | |
in_channels=self.in_channels, | |
channels=self.channels, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
if c1_in_channels > 0: | |
self.c1_bottleneck = ConvModule( | |
c1_in_channels, | |
c1_channels, | |
1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
else: | |
self.c1_bottleneck = None | |
self.sep_bottleneck = nn.Sequential( | |
DepthwiseSeparableConvModule( | |
self.channels + c1_channels, | |
self.channels, | |
3, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
DepthwiseSeparableConvModule( | |
self.channels, | |
self.channels, | |
3, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
def forward(self, inputs): | |
"""Forward function.""" | |
x = self._transform_inputs(inputs) | |
aspp_outs = [ | |
resize( | |
self.image_pool(x), | |
size=x.size()[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
] | |
aspp_outs.extend(self.aspp_modules(x)) | |
aspp_outs = torch.cat(aspp_outs, dim=1) | |
output = self.bottleneck(aspp_outs) | |
if self.c1_bottleneck is not None: | |
c1_output = self.c1_bottleneck(inputs[0]) | |
output = resize( | |
input=output, | |
size=c1_output.shape[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
output = torch.cat([output, c1_output], dim=1) | |
output = self.sep_bottleneck(output) | |
output = self.cls_seg(output) | |
return output | |