Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Dict, List, Optional | |
| import cv2 | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| from mmengine.dist import master_only | |
| from mmengine.structures import PixelData | |
| from mmengine.visualization import Visualizer | |
| from mmseg.registry import VISUALIZERS | |
| from mmseg.structures import SegDataSample | |
| from mmseg.utils import get_classes, get_palette | |
| class SegLocalVisualizer(Visualizer): | |
| """Local Visualizer. | |
| Args: | |
| name (str): Name of the instance. Defaults to 'visualizer'. | |
| image (np.ndarray, optional): the origin image to draw. The format | |
| should be RGB. Defaults to None. | |
| vis_backends (list, optional): Visual backend config list. | |
| Defaults to None. | |
| save_dir (str, optional): Save file dir for all storage backends. | |
| If it is None, the backend storage will not save any data. | |
| classes (list, optional): Input classes for result rendering, as the | |
| prediction of segmentation model is a segment map with label | |
| indices, `classes` is a list which includes items responding to the | |
| label indices. If classes is not defined, visualizer will take | |
| `cityscapes` classes by default. Defaults to None. | |
| palette (list, optional): Input palette for result rendering, which is | |
| a list of color palette responding to the classes. Defaults to None. | |
| dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_ | |
| visulizer will use the meta information of the dataset i.e. classes | |
| and palette, but the `classes` and `palette` have higher priority. | |
| Defaults to None. | |
| alpha (int, float): The transparency of segmentation mask. | |
| Defaults to 0.8. | |
| Examples: | |
| >>> import numpy as np | |
| >>> import torch | |
| >>> from mmengine.structures import PixelData | |
| >>> from mmseg.structures import SegDataSample | |
| >>> from mmseg.visualization import SegLocalVisualizer | |
| >>> seg_local_visualizer = SegLocalVisualizer() | |
| >>> image = np.random.randint(0, 256, | |
| ... size=(10, 12, 3)).astype('uint8') | |
| >>> gt_sem_seg_data = dict(data=torch.randint(0, 2, (1, 10, 12))) | |
| >>> gt_sem_seg = PixelData(**gt_sem_seg_data) | |
| >>> gt_seg_data_sample = SegDataSample() | |
| >>> gt_seg_data_sample.gt_sem_seg = gt_sem_seg | |
| >>> seg_local_visualizer.dataset_meta = dict( | |
| >>> classes=('background', 'foreground'), | |
| >>> palette=[[120, 120, 120], [6, 230, 230]]) | |
| >>> seg_local_visualizer.add_datasample('visualizer_example', | |
| ... image, gt_seg_data_sample) | |
| >>> seg_local_visualizer.add_datasample( | |
| ... 'visualizer_example', image, | |
| ... gt_seg_data_sample, show=True) | |
| """ # noqa | |
| def __init__(self, | |
| name: str = 'visualizer', | |
| image: Optional[np.ndarray] = None, | |
| vis_backends: Optional[Dict] = None, | |
| save_dir: Optional[str] = None, | |
| classes: Optional[List] = None, | |
| palette: Optional[List] = None, | |
| dataset_name: Optional[str] = None, | |
| alpha: float = 0.8, | |
| **kwargs): | |
| super().__init__(name, image, vis_backends, save_dir, **kwargs) | |
| self.alpha: float = alpha | |
| self.set_dataset_meta(palette, classes, dataset_name) | |
| def _get_center_loc(self, mask: np.ndarray) -> np.ndarray: | |
| """Get semantic seg center coordinate. | |
| Args: | |
| mask: np.ndarray: get from sem_seg | |
| """ | |
| loc = np.argwhere(mask == 1) | |
| loc_sort = np.array( | |
| sorted(loc.tolist(), key=lambda row: (row[0], row[1]))) | |
| y_list = loc_sort[:, 0] | |
| unique, indices, counts = np.unique( | |
| y_list, return_index=True, return_counts=True) | |
| y_loc = unique[counts.argmax()] | |
| y_most_freq_loc = loc[loc_sort[:, 0] == y_loc] | |
| center_num = len(y_most_freq_loc) // 2 | |
| x = y_most_freq_loc[center_num][1] | |
| y = y_most_freq_loc[center_num][0] | |
| return np.array([x, y]) | |
| def _draw_sem_seg(self, | |
| image: np.ndarray, | |
| sem_seg: PixelData, | |
| classes: Optional[List], | |
| palette: Optional[List], | |
| with_labels: Optional[bool] = True) -> np.ndarray: | |
| """Draw semantic seg of GT or prediction. | |
| Args: | |
| image (np.ndarray): The image to draw. | |
| sem_seg (:obj:`PixelData`): Data structure for pixel-level | |
| annotations or predictions. | |
| classes (list, optional): Input classes for result rendering, as | |
| the prediction of segmentation model is a segment map with | |
| label indices, `classes` is a list which includes items | |
| responding to the label indices. If classes is not defined, | |
| visualizer will take `cityscapes` classes by default. | |
| Defaults to None. | |
| palette (list, optional): Input palette for result rendering, which | |
| is a list of color palette responding to the classes. | |
| Defaults to None. | |
| with_labels(bool, optional): Add semantic labels in visualization | |
| result, Default to True. | |
| Returns: | |
| np.ndarray: the drawn image which channel is RGB. | |
| """ | |
| num_classes = len(classes) | |
| sem_seg = sem_seg.cpu().data | |
| ids = np.unique(sem_seg)[::-1] | |
| legal_indices = ids < num_classes | |
| ids = ids[legal_indices] | |
| labels = np.array(ids, dtype=np.int64) | |
| colors = [palette[label] for label in labels] | |
| mask = np.zeros_like(image, dtype=np.uint8) | |
| for label, color in zip(labels, colors): | |
| mask[sem_seg[0] == label, :] = color | |
| if with_labels: | |
| font = cv2.FONT_HERSHEY_SIMPLEX | |
| # (0,1] to change the size of the text relative to the image | |
| scale = 0.05 | |
| fontScale = min(image.shape[0], image.shape[1]) / (25 / scale) | |
| fontColor = (255, 255, 255) | |
| if image.shape[0] < 300 or image.shape[1] < 300: | |
| thickness = 1 | |
| rectangleThickness = 1 | |
| else: | |
| thickness = 2 | |
| rectangleThickness = 2 | |
| lineType = 2 | |
| if isinstance(sem_seg[0], torch.Tensor): | |
| masks = sem_seg[0].numpy() == labels[:, None, None] | |
| else: | |
| masks = sem_seg[0] == labels[:, None, None] | |
| masks = masks.astype(np.uint8) | |
| for mask_num in range(len(labels)): | |
| classes_id = labels[mask_num] | |
| classes_color = colors[mask_num] | |
| loc = self._get_center_loc(masks[mask_num]) | |
| text = classes[classes_id] | |
| (label_width, label_height), baseline = cv2.getTextSize( | |
| text, font, fontScale, thickness) | |
| mask = cv2.rectangle(mask, loc, | |
| (loc[0] + label_width + baseline, | |
| loc[1] + label_height + baseline), | |
| classes_color, -1) | |
| mask = cv2.rectangle(mask, loc, | |
| (loc[0] + label_width + baseline, | |
| loc[1] + label_height + baseline), | |
| (0, 0, 0), rectangleThickness) | |
| mask = cv2.putText(mask, text, (loc[0], loc[1] + label_height), | |
| font, fontScale, fontColor, thickness, | |
| lineType) | |
| color_seg = (image * (1 - self.alpha) + mask * self.alpha).astype( | |
| np.uint8) | |
| self.set_image(color_seg) | |
| return color_seg | |
| def _draw_depth_map(self, image: np.ndarray, | |
| depth_map: PixelData) -> np.ndarray: | |
| """Draws a depth map on a given image. | |
| This function takes an image and a depth map as input, | |
| renders the depth map, and concatenates it with the original image. | |
| Finally, it updates the internal image state of the visualizer with | |
| the concatenated result. | |
| Args: | |
| image (np.ndarray): The original image where the depth map will | |
| be drawn. The array should be in the format HxWx3 where H is | |
| the height, W is the width. | |
| depth_map (PixelData): Depth map to be drawn. The depth map | |
| should be in the form of a PixelData object. It will be | |
| converted to a torch tensor if it is a numpy array. | |
| Returns: | |
| np.ndarray: The concatenated image with the depth map drawn. | |
| Example: | |
| >>> depth_map_data = PixelData(data=torch.rand(1, 10, 10)) | |
| >>> image = np.random.randint(0, 256, | |
| >>> size=(10, 10, 3)).astype('uint8') | |
| >>> visualizer = SegLocalVisualizer() | |
| >>> visualizer._draw_depth_map(image, depth_map_data) | |
| """ | |
| depth_map = depth_map.cpu().data | |
| if isinstance(depth_map, np.ndarray): | |
| depth_map = torch.from_numpy(depth_map) | |
| if depth_map.ndim == 2: | |
| depth_map = depth_map[None] | |
| depth_map = self.draw_featmap(depth_map, resize_shape=image.shape[:2]) | |
| out_image = np.concatenate((image, depth_map), axis=0) | |
| self.set_image(out_image) | |
| return out_image | |
| def set_dataset_meta(self, | |
| classes: Optional[List] = None, | |
| palette: Optional[List] = None, | |
| dataset_name: Optional[str] = None) -> None: | |
| """Set meta information to visualizer. | |
| Args: | |
| classes (list, optional): Input classes for result rendering, as | |
| the prediction of segmentation model is a segment map with | |
| label indices, `classes` is a list which includes items | |
| responding to the label indices. If classes is not defined, | |
| visualizer will take `cityscapes` classes by default. | |
| Defaults to None. | |
| palette (list, optional): Input palette for result rendering, which | |
| is a list of color palette responding to the classes. | |
| Defaults to None. | |
| dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_ | |
| visulizer will use the meta information of the dataset i.e. | |
| classes and palette, but the `classes` and `palette` have | |
| higher priority. Defaults to None. | |
| """ # noqa | |
| # Set default value. When calling | |
| # `SegLocalVisualizer().dataset_meta=xxx`, | |
| # it will override the default value. | |
| if dataset_name is None: | |
| dataset_name = 'cityscapes' | |
| classes = classes if classes else get_classes(dataset_name) | |
| palette = palette if palette else get_palette(dataset_name) | |
| assert len(classes) == len( | |
| palette), 'The length of classes should be equal to palette' | |
| self.dataset_meta: dict = {'classes': classes, 'palette': palette} | |
| def add_datasample( | |
| self, | |
| name: str, | |
| image: np.ndarray, | |
| data_sample: Optional[SegDataSample] = None, | |
| draw_gt: bool = True, | |
| draw_pred: bool = True, | |
| show: bool = False, | |
| wait_time: float = 0, | |
| # TODO: Supported in mmengine's Viusalizer. | |
| out_file: Optional[str] = None, | |
| step: int = 0, | |
| with_labels: Optional[bool] = True) -> None: | |
| """Draw datasample and save to all backends. | |
| - If GT and prediction are plotted at the same time, they are | |
| displayed in a stitched image where the left image is the | |
| ground truth and the right image is the prediction. | |
| - If ``show`` is True, all storage backends are ignored, and | |
| the images will be displayed in a local window. | |
| - If ``out_file`` is specified, the drawn image will be | |
| saved to ``out_file``. it is usually used when the display | |
| is not available. | |
| Args: | |
| name (str): The image identifier. | |
| image (np.ndarray): The image to draw. | |
| gt_sample (:obj:`SegDataSample`, optional): GT SegDataSample. | |
| Defaults to None. | |
| pred_sample (:obj:`SegDataSample`, optional): Prediction | |
| SegDataSample. Defaults to None. | |
| draw_gt (bool): Whether to draw GT SegDataSample. Default to True. | |
| draw_pred (bool): Whether to draw Prediction SegDataSample. | |
| Defaults to True. | |
| show (bool): Whether to display the drawn image. Default to False. | |
| wait_time (float): The interval of show (s). Defaults to 0. | |
| out_file (str): Path to output file. Defaults to None. | |
| step (int): Global step value to record. Defaults to 0. | |
| with_labels(bool, optional): Add semantic labels in visualization | |
| result, Defaults to True. | |
| """ | |
| classes = self.dataset_meta.get('classes', None) | |
| palette = self.dataset_meta.get('palette', None) | |
| gt_img_data = None | |
| pred_img_data = None | |
| if draw_gt and data_sample is not None: | |
| if 'gt_sem_seg' in data_sample: | |
| assert classes is not None, 'class information is ' \ | |
| 'not provided when ' \ | |
| 'visualizing semantic ' \ | |
| 'segmentation results.' | |
| gt_img_data = self._draw_sem_seg(image, data_sample.gt_sem_seg, | |
| classes, palette, with_labels) | |
| if 'gt_depth_map' in data_sample: | |
| gt_img_data = gt_img_data if gt_img_data is not None else image | |
| gt_img_data = self._draw_depth_map(gt_img_data, | |
| data_sample.gt_depth_map) | |
| if draw_pred and data_sample is not None: | |
| if 'pred_sem_seg' in data_sample: | |
| assert classes is not None, 'class information is ' \ | |
| 'not provided when ' \ | |
| 'visualizing semantic ' \ | |
| 'segmentation results.' | |
| pred_img_data = self._draw_sem_seg(image, | |
| data_sample.pred_sem_seg, | |
| classes, palette, | |
| with_labels) | |
| if 'pred_depth_map' in data_sample: | |
| pred_img_data = pred_img_data if pred_img_data is not None \ | |
| else image | |
| pred_img_data = self._draw_depth_map( | |
| pred_img_data, data_sample.pred_depth_map) | |
| if gt_img_data is not None and pred_img_data is not None: | |
| drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1) | |
| elif gt_img_data is not None: | |
| drawn_img = gt_img_data | |
| else: | |
| drawn_img = pred_img_data | |
| if show: | |
| self.show(drawn_img, win_name=name, wait_time=wait_time) | |
| if out_file is not None: | |
| mmcv.imwrite(mmcv.rgb2bgr(drawn_img), out_file) | |
| else: | |
| self.add_image(name, drawn_img, step) | |