Models:
- Name: convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 46.11
      mIoU(ms+flip): 46.62
  Config: configs/convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-T
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 4.23
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-small_upernet_8xb2-amp-160k_ade20k-512x512
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 48.56
      mIoU(ms+flip): 49.02
  Config: configs/convnext/convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-S
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 5.16
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-base_upernet_8xb2-amp-160k_ade20k-512x512
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 48.71
      mIoU(ms+flip): 49.54
  Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-B
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 6.33
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-base_upernet_8xb2-amp-160k_ade20k-640x640
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 52.13
      mIoU(ms+flip): 52.66
  Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-B
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 8.53
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-large_upernet_8xb2-amp-160k_ade20k-640x640
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 53.16
      mIoU(ms+flip): 53.38
  Config: configs/convnext/convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-L
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 12.08
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 53.58
      mIoU(ms+flip): 54.11
  Config: configs/convnext/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-XL
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 26.16
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch