dataset_type = 'SynapseDataset' data_root = 'data/synapse/' img_scale = (224, 224) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='RandomRotFlip', rotate_prob=0.5, flip_prob=0.5, degree=20), dict(type='PackSegInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=img_scale, keep_ratio=True), dict(type='LoadAnnotations'), dict(type='PackSegInputs') ] train_dataloader = dict( batch_size=6, num_workers=2, persistent_workers=True, sampler=dict(type='InfiniteSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict( img_path='img_dir/train', seg_map_path='ann_dir/train'), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'), pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict(type='IoUMetric', iou_metrics=['mDice']) test_evaluator = val_evaluator