# model settings norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True) data_preprocessor = dict( type='SegDataPreProcessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_val=0, seg_pad_val=255) model = dict( type='EncoderDecoder', data_preprocessor=data_preprocessor, backbone=dict( type='MobileNetV3', arch='large', out_indices=(1, 3, 16), norm_cfg=norm_cfg), decode_head=dict( type='LRASPPHead', in_channels=(16, 24, 960), in_index=(0, 1, 2), channels=128, input_transform='multiple_select', dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU'), align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))