# optimizer optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.1) optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=3e-2, begin=0, end=12000, by_epoch=False), dict( type='PolyLRRatio', eta_min_ratio=3e-2, power=0.9, begin=12000, end=24000, by_epoch=False), dict(type='ConstantLR', by_epoch=False, factor=1, begin=24000, end=25000) ] # training schedule for 25k train_cfg = dict(type='IterBasedTrainLoop', max_iters=25000, val_interval=1000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='SegVisualizationHook'))