Models: - Name: beit-base_upernet_8xb2-160k_ade20k-640x640 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 53.08 mIoU(ms+flip): 53.84 Config: configs/beit/beit-base_upernet_8xb2-160k_ade20k-640x640.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - BEiT-B - UPerNet Training Resources: 8x V100 GPUS Memory (GB): 15.88 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k-eead221d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k.log.json Paper: Title: 'BEiT: BERT Pre-Training of Image Transformers' URL: https://arxiv.org/abs/2106.08254 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/backbones/beit.py#1404 Framework: PyTorch - Name: beit-large_upernet_8xb1-amp-160k_ade20k-640x640 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 56.33 mIoU(ms+flip): 56.84 Config: configs/beit/beit-large_upernet_8xb1-amp-160k_ade20k-640x640.py Metadata: Training Data: ADE20K Batch Size: 8 Architecture: - BEiT-L - UPerNet Training Resources: 8x V100 GPUS Memory (GB): 22.64 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k.log.json Paper: Title: 'BEiT: BERT Pre-Training of Image Transformers' URL: https://arxiv.org/abs/2106.08254 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/backbones/beit.py#1404 Framework: PyTorch