Collections: - Name: DNLNet License: Apache License 2.0 Metadata: Training Data: - Cityscapes - ADE20K Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 README: configs/dnlnet/README.md Frameworks: - PyTorch Models: - Name: dnl_r50-d8_4xb2-40k_cityscapes-512x1024 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.61 Config: configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - DNLNet Training Resources: 4x V100 GPUS Memory (GB): 7.3 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes-20200904_233629.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r101-d8_4xb2-40k_cityscapes-512x1024 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.31 Config: configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - DNLNet Training Resources: 4x V100 GPUS Memory (GB): 10.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes-20200904_233629.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r50-d8_4xb2-40k_cityscapes-769x769 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.44 mIoU(ms+flip): 80.27 Config: configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - DNLNet Training Resources: 4x V100 GPUS Memory (GB): 9.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes-20200820_232206.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r101-d8_4xb2-40k_cityscapes-769x769 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.39 mIoU(ms+flip): 77.77 Config: configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - DNLNet Training Resources: 4x V100 GPUS Memory (GB): 12.6 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes-20200820_171256.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r50-d8_4xb2-80k_cityscapes-512x1024 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.33 Config: configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - DNLNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes-20200904_233629.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r101-d8_4xb2-80k_cityscapes-512x1024 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.41 Config: configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - DNLNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes-20200904_233629.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r50-d8_4xb2-80k_cityscapes-769x769 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.36 mIoU(ms+flip): 80.7 Config: configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - DNLNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes-20200820_011925.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r101-d8_4xb2-80k_cityscapes-769x769 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.41 mIoU(ms+flip): 80.68 Config: configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - DNLNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes-20200821_051111.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r50-d8_4xb4-80k_ade20k-512x512 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.76 mIoU(ms+flip): 42.99 Config: configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - DNLNet Training Resources: 4x V100 GPUS Memory (GB): 8.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k-20200826_183354.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r101-d8_4xb4-80k_ade20k-512x512 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.76 mIoU(ms+flip): 44.91 Config: configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D8 - DNLNet Training Resources: 4x V100 GPUS Memory (GB): 12.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k-20200826_183354.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r50-d8_4xb4-160k_ade20k-512x512 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.87 mIoU(ms+flip): 43.01 Config: configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - DNLNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k-20200826_183350.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch - Name: dnl_r101-d8_4xb4-160k_ade20k-512x512 In Collection: DNLNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.25 mIoU(ms+flip): 45.78 Config: configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D8 - DNLNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k-20200826_183350.log.json Paper: Title: Disentangled Non-Local Neural Networks URL: https://arxiv.org/abs/2006.06668 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Framework: PyTorch