# Fast-SCNN > [Fast-SCNN for Semantic Segmentation](https://arxiv.org/abs/1902.04502) ## Introduction Official Repo Code Snippet ## Abstract The encoder-decoder framework is state-of-the-art for offline semantic image segmentation. Since the rise in autonomous systems, real-time computation is increasingly desirable. In this paper, we introduce fast segmentation convolutional neural network (Fast-SCNN), an above real-time semantic segmentation model on high resolution image data (1024x2048px) suited to efficient computation on embedded devices with low memory. Building on existing two-branch methods for fast segmentation, we introduce our \`learning to downsample' module which computes low-level features for multiple resolution branches simultaneously. Our network combines spatial detail at high resolution with deep features extracted at lower resolution, yielding an accuracy of 68.0% mean intersection over union at 123.5 frames per second on Cityscapes. We also show that large scale pre-training is unnecessary. We thoroughly validate our metric in experiments with ImageNet pre-training and the coarse labeled data of Cityscapes. Finally, we show even faster computation with competitive results on subsampled inputs, without any network modifications.
## Results and models ### Cityscapes | Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | | -------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | FastSCNN | FastSCNN | 512x1024 | 160000 | 3.3 | 56.45 | V100 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) | ## Citation ```bibtex @article{poudel2019fast, title={Fast-scnn: Fast semantic segmentation network}, author={Poudel, Rudra PK and Liwicki, Stephan and Cipolla, Roberto}, journal={arXiv preprint arXiv:1902.04502}, year={2019} } ```