Collections: - Name: FastSCNN License: Apache License 2.0 Metadata: Training Data: - Cityscapes Paper: Title: Fast-SCNN for Semantic Segmentation URL: https://arxiv.org/abs/1902.04502 README: configs/fastscnn/README.md Frameworks: - PyTorch Models: - Name: fast_scnn_8xb4-160k_cityscapes-512x1024 In Collection: FastSCNN Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.96 mIoU(ms+flip): 72.65 Config: configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 32 Architecture: - FastSCNN - FastSCNN Training Resources: 8x V100 GPUS Memory (GB): 3.3 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json Paper: Title: Fast-SCNN for Semantic Segmentation URL: https://arxiv.org/abs/1902.04502 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/fast_scnn.py#L272 Framework: PyTorch