Collections: - Name: GCNet License: Apache License 2.0 Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 README: configs/gcnet/README.md Frameworks: - PyTorch Models: - Name: gcnet_r50-d8_4xb2-40k_cityscapes-512x1024 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.69 mIoU(ms+flip): 78.56 Config: configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 5.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb2-40k_cityscapes-512x1024 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.28 mIoU(ms+flip): 79.34 Config: configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 9.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb2-40k_cityscapes-769x769 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.12 mIoU(ms+flip): 80.09 Config: configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 6.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb2-40k_cityscapes-769x769 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.95 mIoU(ms+flip): 80.71 Config: configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 10.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb2-80k_cityscapes-512x1024 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.48 mIoU(ms+flip): 80.01 Config: configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb2-80k_cityscapes-512x1024 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 mIoU(ms+flip): 79.84 Config: configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb2-80k_cityscapes-769x769 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.68 mIoU(ms+flip): 80.66 Config: configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb2-80k_cityscapes-769x769 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.18 mIoU(ms+flip): 80.71 Config: configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb4-80k_ade20k-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.47 mIoU(ms+flip): 42.85 Config: configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 8.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb4-80k_ade20k-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.82 mIoU(ms+flip): 44.54 Config: configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 12.0 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb4-160k_ade20k-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.37 mIoU(ms+flip): 43.52 Config: configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb4-160k_ade20k-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.69 mIoU(ms+flip): 45.21 Config: configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb4-20k_voc12aug-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.42 mIoU(ms+flip): 77.51 Config: configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 5.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb4-20k_voc12aug-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.41 mIoU(ms+flip): 78.56 Config: configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Memory (GB): 9.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r50-d8_4xb4-40k_voc12aug-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.24 mIoU(ms+flip): 77.63 Config: configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-50-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch - Name: gcnet_r101-d8_4xb4-40k_voc12aug-512x512 In Collection: GCNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.84 mIoU(ms+flip): 78.59 Config: configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-101-D8 - GCNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806.log.json Paper: Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' URL: https://arxiv.org/abs/1904.11492 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 Framework: PyTorch