# ICNet
> [ICNet for Real-time Semantic Segmentation on High-resolution Images](https://arxiv.org/abs/1704.08545)
## Introduction
Official Repo
Code Snippet
## Abstract
We focus on the challenging task of real-time semantic segmentation in this paper. It finds many practical applications and yet is with fundamental difficulty of reducing a large portion of computation for pixel-wise label inference. We propose an image cascade network (ICNet) that incorporates multi-resolution branches under proper label guidance to address this challenge. We provide in-depth analysis of our framework and introduce the cascade feature fusion unit to quickly achieve high-quality segmentation. Our system yields real-time inference on a single GPU card with decent quality results evaluated on challenging datasets like Cityscapes, CamVid and COCO-Stuff.
## Results and models
### Cityscapes
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
| ---------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ICNet | R-18-D8 | 832x832 | 80000 | 1.70 | 27.12 | V100 | 68.14 | 70.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json) |
| ICNet | R-18-D8 | 832x832 | 160000 | - | - | V100 | 71.64 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json) |
| ICNet (in1k-pre) | R-18-D8 | 832x832 | 80000 | - | - | V100 | 72.51 | 74.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json) |
| ICNet (in1k-pre) | R-18-D8 | 832x832 | 160000 | - | - | V100 | 74.43 | 76.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json) |
| ICNet | R-50-D8 | 832x832 | 80000 | 2.53 | 20.08 | V100 | 68.91 | 69.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json) |
| ICNet | R-50-D8 | 832x832 | 160000 | - | - | V100 | 73.82 | 75.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json) |
| ICNet (in1k-pre) | R-50-D8 | 832x832 | 80000 | - | - | V100 | 74.58 | 76.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json) |
| ICNet (in1k-pre) | R-50-D8 | 832x832 | 160000 | - | - | V100 | 76.29 | 78.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json) |
| ICNet | R-101-D8 | 832x832 | 80000 | 3.08 | 16.95 | V100 | 70.28 | 71.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json) |
| ICNet | R-101-D8 | 832x832 | 160000 | - | - | V100 | 73.80 | 76.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json) |
| ICNet (in1k-pre) | R-101-D8 | 832x832 | 80000 | - | - | V100 | 75.57 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json) |
| ICNet (in1k-pre) | R-101-D8 | 832x832 | 160000 | - | - | V100 | 76.15 | 77.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json) |
Note: `in1k-pre` means pretrained model is used.
## Citation
```bibtext
@inproceedings{zhao2018icnet,
title={Icnet for real-time semantic segmentation on high-resolution images},
author={Zhao, Hengshuang and Qi, Xiaojuan and Shen, Xiaoyong and Shi, Jianping and Jia, Jiaya},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={405--420},
year={2018}
}
```