_base_ = 'knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py' checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth' # noqa # model settings model = dict( pretrained=checkpoint_file, backbone=dict( embed_dims=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7, use_abs_pos_embed=False, drop_path_rate=0.3, patch_norm=True), decode_head=dict( kernel_generate_head=dict(in_channels=[192, 384, 768, 1536])), auxiliary_head=dict(in_channels=768)) # In K-Net implementation we use batch size 2 per GPU as default train_dataloader = dict(batch_size=2, num_workers=2) val_dataloader = dict(batch_size=1, num_workers=4) test_dataloader = val_dataloader