Collections: - Name: KNet License: Apache License 2.0 Metadata: Training Data: - ADE20K Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 README: configs/knet/README.md Frameworks: - PyTorch Models: - Name: knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.6 mIoU(ms+flip): 45.12 Config: configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - KNet - FCN Training Resources: 8x V100 GPUS Memory (GB): 7.01 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch - Name: knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.18 mIoU(ms+flip): 45.58 Config: configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - KNet - PSPNet Training Resources: 8x V100 GPUS Memory (GB): 6.98 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch - Name: knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.06 mIoU(ms+flip): 46.11 Config: configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - KNet - DeepLabV3 Training Resources: 8x V100 GPUS Memory (GB): 7.42 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch - Name: knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.45 mIoU(ms+flip): 44.07 Config: configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - KNet - UperNet Training Resources: 8x V100 GPUS Memory (GB): 7.34 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch - Name: knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.84 mIoU(ms+flip): 46.27 Config: configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-T - KNet - UperNet Training Resources: 8x V100 GPUS Memory (GB): 7.57 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch - Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 52.05 mIoU(ms+flip): 53.24 Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-L - KNet - UperNet Training Resources: 8x V100 GPUS Memory (GB): 13.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch - Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640 In Collection: KNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 52.21 mIoU(ms+flip): 53.34 Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-L - KNet - UperNet Training Resources: 8x V100 GPUS Memory (GB): 13.54 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json Paper: Title: 'K-Net: Towards Unified Image Segmentation' URL: https://arxiv.org/abs/2106.14855 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392 Framework: PyTorch