Models: - Name: mae-base_upernet_8xb2-amp-160k_ade20k-512x512 In Collection: UPerNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.13 mIoU(ms+flip): 48.7 Config: configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - ViT-B - UPerNet Training Resources: 8x V100 GPUS Memory (GB): 9.96 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json Paper: Title: Masked Autoencoders Are Scalable Vision Learners URL: https://arxiv.org/abs/2111.06377 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.24.0/mmseg/models/backbones/mae.py#L46 Framework: PyTorch