Collections: - Name: Mask2Former License: Apache License 2.0 Metadata: Training Data: - Usage - Cityscapes - ADE20K Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 README: configs/mask2former/README.md Frameworks: - PyTorch Models: - Name: mask2former_r50_8xb2-90k_cityscapes-512x1024 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.44 Config: configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - R-50-D32 - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 5.67 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_r101_8xb2-90k_cityscapes-512x1024 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.8 Config: configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - R-101-D32 - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 6.81 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-t_8xb2-90k_cityscapes-512x1024 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 81.71 Config: configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - Swin-T - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 6.36 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-s_8xb2-90k_cityscapes-512x1024 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 82.57 Config: configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - Swin-S - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 8.09 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 83.52 Config: configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - Swin-B - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 10.89 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 83.65 Config: configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - Swin-L - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 15.83 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_r50_8xb2-160k_ade20k-512x512 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 47.87 Config: configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D32 - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 3.31 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_r101_8xb2-160k_ade20k-512x512 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.6 Config: configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D32 - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 4.09 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-t_8xb2-160k_ade20k-512x512 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 48.66 Config: configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-T - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 3826.0 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-s_8xb2-160k_ade20k-512x512 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 51.24 Config: configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-S - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 3.74 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 52.44 Config: configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-B - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 5.66 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 53.9 Config: configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-B - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 5.66 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch - Name: mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640 In Collection: Mask2Former Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 56.01 Config: configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - Swin-L - Mask2Former Training Resources: 8x A100 GPUS Memory (GB): 8.86 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933.json Paper: Title: Masked-attention Mask Transformer for Universal Image Segmentation URL: https://arxiv.org/abs/2112.01527 Code: https://github.com/open-mmlab/mmdetection/blob/3.x/mmdet/models/dense_heads/mask2former_head.py Framework: PyTorch