Collections: - Name: OCRNet License: Apache License 2.0 Metadata: Training Data: - Cityscapes - '# HRNet backbone' - '# ResNet backbone' - ADE20K - Pascal VOC 2012 + Aug Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 README: configs/ocrnet/README.md Frameworks: - PyTorch Models: - Name: ocrnet_hr18s_4xb2-40k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 76.61 mIoU(ms+flip): 78.01 Config: configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x A100 GPUS Memory (GB): 3.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb2-40k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 77.72 mIoU(ms+flip): 79.49 Config: configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 4.7 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb2-40k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 80.58 mIoU(ms+flip): 81.79 Config: configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 8.0 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18s_4xb2-80k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 77.16 mIoU(ms+flip): 78.66 Config: configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb2-80k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 78.57 mIoU(ms+flip): 80.46 Config: configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb2-80k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 80.7 mIoU(ms+flip): 81.87 Config: configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18s_4xb2-160k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 78.45 mIoU(ms+flip): 79.97 Config: configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb2-160k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 79.47 mIoU(ms+flip): 80.91 Config: configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb2-160k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# HRNet backbone' Metrics: mIoU: 81.35 mIoU(ms+flip): 82.7 Config: configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py Metadata: Training Data: '# HRNet backbone' Batch Size: 8 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# ResNet backbone' Metrics: mIoU: 80.09 Config: configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: '# ResNet backbone' Batch Size: 8 Architecture: - R-101-D8 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# ResNet backbone' Metrics: mIoU: 80.3 Config: configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py Metadata: Training Data: '# ResNet backbone' Batch Size: 16 Architecture: - R-101-D8 - OCRNet Training Resources: 8x V100 GPUS Memory (GB): 8.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: '# ResNet backbone' Metrics: mIoU: 80.81 Config: configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py Metadata: Training Data: '# ResNet backbone' Batch Size: 16 Architecture: - R-101-D8 - OCRNet Training Resources: 8x V100 GPUS Memory (GB): 8.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 35.06 mIoU(ms+flip): 35.8 Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 6.7 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb4-80k_ade20k-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 37.79 mIoU(ms+flip): 39.16 Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 7.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb4-80k_ade20k-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.0 mIoU(ms+flip): 44.3 Config: configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 11.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 37.19 mIoU(ms+flip): 38.4 Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb4-80k_ade20k-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 39.32 mIoU(ms+flip): 40.8 Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb4-160k_ade20k-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.25 mIoU(ms+flip): 44.88 Config: configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18s_4xb4-20k_voc12aug-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 71.7 mIoU(ms+flip): 73.84 Config: configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 3.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb4-20k_voc12aug-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.75 mIoU(ms+flip): 77.11 Config: configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 4.7 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb4-20k_voc12aug-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.72 mIoU(ms+flip): 79.87 Config: configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Memory (GB): 8.1 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18s_4xb4-40k_voc12aug-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 72.76 mIoU(ms+flip): 74.6 Config: configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - HRNetV2p-W18-Small - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr18_4xb4-40k_voc12aug-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.98 mIoU(ms+flip): 77.4 Config: configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - HRNetV2p-W18 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch - Name: ocrnet_hr48_4xb4-40k_voc12aug-512x512 In Collection: OCRNet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.14 mIoU(ms+flip): 79.71 Config: configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - HRNetV2p-W48 - OCRNet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json Paper: Title: Object-Contextual Representations for Semantic Segmentation URL: https://arxiv.org/abs/1909.11065 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86 Framework: PyTorch