Collections: - Name: PSANet License: Apache License 2.0 Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf README: configs/psanet/README.md Frameworks: - PyTorch Models: - Name: psanet_r50-d8_4xb2-40k_cityscapes-512x1024 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.63 mIoU(ms+flip): 79.04 Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 7.0 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb2-40k_cityscapes-512x1024 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.14 mIoU(ms+flip): 80.19 Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 10.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb2-40k_cityscapes-769x769 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.99 mIoU(ms+flip): 79.64 Config: configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 7.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb2-40k_cityscapes-769x769 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.43 mIoU(ms+flip): 80.26 Config: configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 11.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb2-80k_cityscapes-512x1024 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.24 mIoU(ms+flip): 78.69 Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb2-80k_cityscapes-512x1024 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.31 mIoU(ms+flip): 80.53 Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb2-80k_cityscapes-769x769 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.31 mIoU(ms+flip): 80.91 Config: configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb2-80k_cityscapes-769x769 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.69 mIoU(ms+flip): 80.89 Config: configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb4-80k_ade20k-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.14 mIoU(ms+flip): 41.91 Config: configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 9.0 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb4-80k_ade20k-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.8 mIoU(ms+flip): 44.75 Config: configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 12.5 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb4-160k_ade20k-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.67 mIoU(ms+flip): 42.95 Config: configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb4-160k_ade20k-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.74 mIoU(ms+flip): 45.38 Config: configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb4-20k_voc12aug-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.39 mIoU(ms+flip): 77.34 Config: configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 6.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb4-20k_voc12aug-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.91 mIoU(ms+flip): 79.3 Config: configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Memory (GB): 10.4 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r50-d8_4xb4-40k_voc12aug-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.3 mIoU(ms+flip): 77.35 Config: configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-50-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch - Name: psanet_r101-d8_4xb4-40k_voc12aug-512x512 In Collection: PSANet Results: Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.73 mIoU(ms+flip): 79.05 Config: configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py Metadata: Training Data: Pascal VOC 2012 + Aug Batch Size: 16 Architecture: - R-101-D8 - PSANet Training Resources: 4x V100 GPUS Weights: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json Paper: Title: 'PSANet: Point-wise Spatial Attention Network for Scene Parsing' URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18 Framework: PyTorch