_base_ = [ '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] crop_size = (512, 1024) data_preprocessor = dict(size=crop_size) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( data_preprocessor=data_preprocessor, pretrained=None, backbone=dict( type='ResNet', init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint), dilations=(1, 1, 2, 4), strides=(1, 2, 2, 2))) optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.0005, weight_decay=0.05), clip_grad=dict(max_norm=1, norm_type=2)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=1000, end=80000, by_epoch=False, milestones=[60000, 72000], ) ]