Models: - Name: resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024 In Collection: FCN Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.56 mIoU(ms+flip): 78.98 Config: configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - S-101-D8 - FCN Training Resources: 4x V100 GPUS Memory (GB): 11.4 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024 In Collection: PSPNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.57 mIoU(ms+flip): 79.19 Config: configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - S-101-D8 - PSPNet Training Resources: 4x V100 GPUS Memory (GB): 11.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024 In Collection: DeepLabV3 Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.67 mIoU(ms+flip): 80.51 Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - S-101-D8 - DeepLabV3 Training Resources: 4x V100 GPUS Memory (GB): 11.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024 In Collection: DeepLabV3+ Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.62 mIoU(ms+flip): 80.27 Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - S-101-D8 - DeepLabV3+ Training Resources: 4x V100 GPUS Memory (GB): 13.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512 In Collection: FCN Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.62 mIoU(ms+flip): 46.16 Config: configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - S-101-D8 - FCN Training Resources: 4x V100 GPUS Memory (GB): 14.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512 In Collection: PSPNet Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.44 mIoU(ms+flip): 46.28 Config: configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - S-101-D8 - PSPNet Training Resources: 4x V100 GPUS Memory (GB): 14.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512 In Collection: DeepLabV3 Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.71 mIoU(ms+flip): 46.59 Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - S-101-D8 - DeepLabV3 Training Resources: 4x V100 GPUS Memory (GB): 14.6 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch - Name: resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512 In Collection: DeepLabV3+ Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 46.47 mIoU(ms+flip): 47.27 Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - S-101-D8 - DeepLabV3+ Training Resources: 4x V100 GPUS Memory (GB): 16.2 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://arxiv.org/abs/2004.08955 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271 Framework: PyTorch