Collections: - Name: ERFNet License: Apache License 2.0 Metadata: Training Data: - Cityscapes Paper: Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation' URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf README: configs/erfnet/README.md Frameworks: - PyTorch Models: - Name: erfnet_fcn_4xb4-160k_cityscapes-512x1024 In Collection: ERFNet Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 72.5 mIoU(ms+flip): 74.75 Config: configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 16 Architecture: - ERFNet - ERFNet Training Resources: 4x V100 GPUS Memory (GB): 6.04 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145.log.json Paper: Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation' URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/erfnet.py#L321 Framework: PyTorch