# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Union import torch import torch.nn as nn from torch import Tensor from mmseg.registry import MODELS from .utils import weight_reduce_loss def silog_loss(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, eps: float = 1e-4, reduction: Union[str, None] = 'mean', avg_factor: Optional[int] = None) -> Tensor: """Computes the Scale-Invariant Logarithmic (SI-Log) loss between prediction and target. Args: pred (Tensor): Predicted output. target (Tensor): Ground truth. weight (Optional[Tensor]): Optional weight to apply on the loss. eps (float): Epsilon value to avoid division and log(0). reduction (Union[str, None]): Specifies the reduction to apply to the output: 'mean', 'sum' or None. avg_factor (Optional[int]): Optional average factor for the loss. Returns: Tensor: The calculated SI-Log loss. """ pred, target = pred.flatten(1), target.flatten(1) valid_mask = (target > eps).detach().float() diff_log = torch.log(target.clamp(min=eps)) - torch.log( pred.clamp(min=eps)) valid_mask = (target > eps).detach() & (~torch.isnan(diff_log)) diff_log[~valid_mask] = 0.0 valid_mask = valid_mask.float() diff_log_sq_mean = (diff_log.pow(2) * valid_mask).sum( dim=1) / valid_mask.sum(dim=1).clamp(min=eps) diff_log_mean = (diff_log * valid_mask).sum(dim=1) / valid_mask.sum( dim=1).clamp(min=eps) loss = torch.sqrt(diff_log_sq_mean - 0.5 * diff_log_mean.pow(2)) if weight is not None: weight = weight.float() loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @MODELS.register_module() class SiLogLoss(nn.Module): """Compute SiLog loss. Args: reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. loss_name (str, optional): Name of the loss item. If you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Defaults to 'loss_silog'. """ def __init__(self, reduction='mean', loss_weight=1.0, eps=1e-6, loss_name='loss_silog'): super().__init__() self.reduction = reduction self.loss_weight = loss_weight self.eps = eps self._loss_name = loss_name def forward( self, pred, target, weight=None, avg_factor=None, reduction_override=None, ): assert pred.shape == target.shape, 'the shapes of pred ' \ f'({pred.shape}) and target ({target.shape}) are mismatch' assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * silog_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor, ) return loss @property def loss_name(self): """Loss Name. This function must be implemented and will return the name of this loss function. This name will be used to combine different loss items by simple sum operation. In addition, if you want this loss item to be included into the backward graph, `loss_` must be the prefix of the name. Returns: str: The name of this loss item. """ return self._loss_name