zklee98's picture
Update app.py
994d04f verified
raw
history blame
5.58 kB
import timm
import transformers
from torch import nn
import numpy as np
import gradio as gr
import PIL
# Instantiate classification model
from fastai.vision.all import *
model_multi = load_learner('vit_tiny_patch16.pkl')
def binary_label(path):
return 'No-anomaly' if (parent_label(path) == 'No-Anomaly') else 'Anomaly'
model_binary = load_learner('vit_tiny_patch16_binary.pkl')
# Instantiate segmentation model
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from torchvision.transforms import Grayscale
seg_feature_extractor = SegformerFeatureExtractor.from_pretrained('zklee98/segformer-b1-solarModuleAnomaly-v0.1')
seg_model = SegformerForSemanticSegmentation.from_pretrained('zklee98/segformer-b1-solarModuleAnomaly-v0.1')
def get_seg_overlay(image, seg):
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(sidewalk_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Show image + mask
img = np.array(image) * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
#img = PIL.Image.open(img)
return img
#@title `def sidewalk_palette()`
def sidewalk_palette():
"""Sidewalk palette that maps each class to RGB values."""
return [
[0, 0, 0],
[216, 82, 24],
[255, 255, 0],
[125, 46, 141],
[118, 171, 47],
[161, 19, 46],
[255, 0, 0],
[0, 128, 128],
[190, 190, 0],
[0, 255, 0],
[0, 0, 255],
[170, 0, 255],
[84, 84, 0],
[84, 170, 0],
[84, 255, 0],
[170, 84, 0],
[170, 170, 0],
[170, 255, 0],
[255, 84, 0],
[255, 170, 0],
[255, 255, 0],
[33, 138, 200],
[0, 170, 127],
[0, 255, 127],
[84, 0, 127],
[84, 84, 127],
[84, 170, 127],
[84, 255, 127],
[170, 0, 127],
[170, 84, 127],
[170, 170, 127],
[170, 255, 127],
[255, 0, 127],
[255, 84, 127],
[255, 170, 127],
]
def predict(classification_mode, image):
if (classification_mode == 'Binary Classification'):
model = model_binary
else:
model = model_multi
labels = model.dls.vocab
# Classification model prediction
#image = PILImage.create(image)
pred, pred_idx, probs = model.predict(image)
seg_img = None
percentage_affected = '0%'
if (pred.upper() != 'NO-ANOMALY'):
addChannel = Grayscale(num_output_channels=3)
image = addChannel(image)
inputs = seg_feature_extractor(images=image, return_tensors="pt")
outputs = seg_model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1], # (height, width)
mode='bilinear',
align_corners=False)
# Second, apply argmax on the class dimension
pred_seg = upsampled_logits.argmax(dim=1)[0]
seg_img = get_seg_overlay(image, pred_seg)
classified_pixels = np.unique(pred_seg.numpy(), return_counts=True)
pixels_count = dict({classified_pixels[0][0]: classified_pixels[1][0],
classified_pixels[0][1]: classified_pixels[1][1]})
percentage_affected = round((pixels_count[1]/960)*100, 1)
percentage_affected = str(percentage_affected) + '%'
seg_img = PIL.Image.fromarray(seg_img)
return ({labels[i]: float(probs[i]) for i in range(len(labels))}, seg_img, percentage_affected)
description = """
<center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/dronePV_picture.jpg" width=270px> </center><br><br><br><br>
<center>This program identifies the type of anomaly found in solar panel using an image classification model and the percentage of the affected area using an image segmentation model.</center>
<center><i>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</center></i>
"""
gr.Interface(fn=predict,
inputs= [gr.Dropdown(choices=['Binary Classification', 'Multiclass Classification'], label='Classification Mode:',
info='Choose to classify between anomaly and no-anomaly OR between 12 different types of anomalies.'),
gr.Image(type='pil', label='Input infrared image: ')],
outputs=[gr.outputs.Label(num_top_classes=3, label='Detected:').style(container=False),
gr.Image(type='pil', label=' ').style(height=240, width=144),
gr.Textbox(label='Affected area:').style(container=False)],
title='Solar Panel Anomaly Detector',
description=description,
examples=['/images/10000.jpg', '/images/1093.jpg'],
#[PILImage.create('https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/1046.jpg')]],
#['/images/1093.jpg'],
#['/images/2503.jpg'],
#['/images/4978.jpg'],
#['/images/5039.jpg'],
#['/images/7001.jpg']],
article= '<center>by <a href="https://www.linkedin.com/in/lzk/">Lee Zhe Kaai</a></center>').launch()