zklee98 commited on
Commit
5af53ce
·
verified ·
1 Parent(s): c99c78a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -125,13 +125,14 @@ def predict(classification_mode, image):
125
 
126
  description = """
127
  <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br><br><br><br>
128
- <center>This program identifies the type of anomaly found in solar panel using an image classification model and the percentage of the affected area using an image segmentation model.</center>
129
- <center><i>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</center></i>
 
130
  """
131
 
132
  gr.Interface(fn=predict,
133
  inputs= [gr.Dropdown(choices=['Binary Classification', 'Multiclass Classification'], label='Classification Mode:',
134
- info='Choose to classify between anomaly and no-anomaly OR between 12 different types of anomalies.'),
135
  gr.Image(type='pil', label='Input infrared image: ')],
136
  outputs=[gr.outputs.Label(num_top_classes=3, label='Detected:').style(container=False),
137
  gr.Image(type='pil', label=' ').style(height=240, width=144),
 
125
 
126
  description = """
127
  <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br><br><br><br>
128
+ <center>This program identifies the type of anomaly found in solar panel using an image classification model and </center><br>
129
+ <center> the percentage of the affected area using an image segmentation model.</center><br>
130
+ <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
131
  """
132
 
133
  gr.Interface(fn=predict,
134
  inputs= [gr.Dropdown(choices=['Binary Classification', 'Multiclass Classification'], label='Classification Mode:',
135
+ info='Choose to classify between anomaly and no-anomaly (Binary) OR between 12 different types of anomalies (Multi).'),
136
  gr.Image(type='pil', label='Input infrared image: ')],
137
  outputs=[gr.outputs.Label(num_top_classes=3, label='Detected:').style(container=False),
138
  gr.Image(type='pil', label=' ').style(height=240, width=144),