zklee98 commited on
Commit
a30b880
·
verified ·
1 Parent(s): ee0cbb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -125,15 +125,15 @@ def predict(classification_mode, image):
125
 
126
  description = """
127
  <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br>
128
- <center>This program identifies the type of anomaly found in solar panel using an image classification model and the percentage of the affected area using an image segmentation model.</center><br><br><br>
129
- <center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center><br>
130
  <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
131
  """
132
 
133
  gr.Interface(fn=predict,
134
- inputs= [gr.Dropdown(choices=['Binary Classification', 'Multiclass Classification'], label='Classification Mode:',
135
- info='Choose to classify between anomaly and no-anomaly (Binary) OR between 12 different types of anomalies (Multi).'),
136
- gr.Image(type='pil', label='Input infrared image: ')],
137
  outputs=[gr.outputs.Label(num_top_classes=3, label='Detected:').style(container=False),
138
  gr.Image(type='pil', label=' ').style(height=240, width=144),
139
  gr.Textbox(label='Affected area:').style(container=False)],
 
125
 
126
  description = """
127
  <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br>
128
+ <center>This program identifies the type of anomaly found in solar panel using an image classification model and percentage of the affected area using an image segmentation model.</center><br><br><br>
129
+ <center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit | Examples available below</center><br>
130
  <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
131
  """
132
 
133
  gr.Interface(fn=predict,
134
+ inputs= [gr.Dropdown(choices=['Binary Classification', 'Multiclass Classification'], label='(Step 1) Classification Mode:',
135
+ info='Choose to classify between anomaly and no-anomaly (Binary) OR between 12 different types of anomalies (Multi).').style(container=False),
136
+ gr.Image(type='pil', label='(Step 2) Input infrared image: ').style(container=False)],
137
  outputs=[gr.outputs.Label(num_top_classes=3, label='Detected:').style(container=False),
138
  gr.Image(type='pil', label=' ').style(height=240, width=144),
139
  gr.Textbox(label='Affected area:').style(container=False)],