zklee98 commited on
Commit
ba19d5d
·
verified ·
1 Parent(s): 8fd6ef7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -124,9 +124,9 @@ def predict(classification_mode, image):
124
 
125
 
126
  description = """
127
- <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br><br><br><br>
128
- <center>This program identifies the type of anomaly found in solar panel using an image classification model and </center>
129
- <center> the percentage of the affected area using an image segmentation model.</center><br>
130
  <center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center>
131
  <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
132
  """
 
124
 
125
 
126
  description = """
127
+ <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center>
128
+ <center>This program identifies the <b>type of anomaly</b> found in solar panel using an image classification model and </center>
129
+ <center> the <b>percentage of the affected area</b> using an image segmentation model.</center><br><br><br><br>
130
  <center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center>
131
  <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
132
  """