File size: 3,801 Bytes
2398be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# πŸ§ͺ HOW TO RUN ACCURACY TEST

## Quick Test Instructions

### Step 1: Start the Server
Open a PowerShell terminal and run:
```powershell
cd D:\mis_2\LinkScout
python combined_server.py
```

**Wait until you see**:
```
βœ… Core models loaded (RoBERTa, Emotion, NER, Hate, Clickbait, Bias)
πŸ€– [RL] Reinforcement Learning Agent initialized
  RL Agent: READY (Episodes: 0)
  Server starting...
```

### Step 2: Run the Test (in a NEW terminal)
Open a **NEW** PowerShell window and run:
```powershell
cd D:\mis_2\LinkScout
python test_simple_manual.py
```

Press ENTER when prompted.

### Step 3: Review Results
The test will process 10 samples:
- **5 Fake News** (COVID conspiracies, election fraud, chemtrails, 5G, cancer cures)
- **5 Real News** (WHO, NASA, MIT, CDC, Federal Reserve)

You'll see:
- βœ… **Accuracy** (target: 70%+)
- βœ… **False Positive Rate** (target: <20%)
- βœ… **Recall** (target: 60%+)
- βœ… **Precision** (target: 60%+)

Results saved to: `simple_test_results.json`

---

## What the Test Validates

### βœ… Database Expansion (97 false claims)
The test includes content matching claims from our expanded database:
- COVID vaccine misinformation
- Election fraud claims  
- Chemtrails conspiracy
- 5G health concerns
- Alternative medicine claims

### βœ… ML Model Integration (35% weight)
RoBERTa fake news classifier analyzes all samples and contributes 35% to risk score.

### βœ… Revolutionary Detection (40% weight)
8-phase linguistic analysis detects propaganda, emotional manipulation, etc.

---

## Expected Results

Based on our improvements:

### Before Improvements:
- Accuracy: ~48%
- Many false claims missed
- ML model not used

### After Improvements (Target):
- Accuracy: **70-80%** βœ…
- False Positive Rate: **<20%** βœ…
- Recall: **60-80%** βœ…
- Database + ML working together

---

## Sample Output

```
πŸ” Testing Sample #1: COVID vaccine conspiracy theories
   Expected: FAKE
   Content: COVID-19 vaccines contain microchips...
   βœ… Risk Score: 78.5%
   βœ… CORRECT - Detected as high risk

πŸ” Testing Sample #6: Credible science reporting
   Expected: REAL
   Content: According to peer-reviewed study in Nature...
   βœ… Risk Score: 18.2%
   βœ… CORRECT - Detected as low risk

πŸ“ˆ FINAL RESULTS
================================================================================
πŸ“Š Confusion Matrix:
   True Positives (TP):  4 - Fake news correctly detected
   True Negatives (TN):  4 - Real news correctly identified
   False Positives (FP): 1 - Real news marked as fake
   False Negatives (FN): 1 - Fake news missed

🎯 Key Metrics:
   Accuracy:  80.0%  βœ…
   FP Rate:   20.0%  βœ…
   Recall:    80.0%  βœ…
   Precision: 80.0%  βœ…

βœ… EXCELLENT - System performing well!
```

---

## Troubleshooting

### Server won't start:
```powershell
# Make sure you're in the right directory
cd D:\mis_2\LinkScout
ls combined_server.py  # Should exist

# Try running directly
python combined_server.py
```

### Test says "Connection refused":
- Server not running yet
- Wait 30 seconds after starting server
- Check server terminal shows "Server starting..."

### All tests fail:
- Check server didn't crash (look at server terminal)
- Server might be overloaded - restart it
- Try running test again

---

## Alternative: Manual Testing

If automated test has issues, test manually:

1. Start server: `python combined_server.py`
2. Open Chrome extension
3. Visit these sites:
   - **Fake**: conspiracy theory sites, health misinformation
   - **Real**: BBC, Reuters, Nature, WHO official pages
4. Click "Scan Page" and check risk scores
5. Fake news should show **60-100% risk**
6. Real news should show **0-40% risk**

---

**The test will show if our 3 implementations (Database + ML + Test Suite) improved accuracy from 48% to 70-80%!** 🎯