--- library_name: transformers license: apache-2.0 base_model: deepvk/RuModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: modernbert-spam-classifier results: [] --- # modernbert-spam-classifier This model is a fine-tuned version of [deepvk/RuModernBERT-base](https://huggingface.co/deepvk/RuModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0141 - Accuracy: 0.9963 - F1: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0235 | 1.0 | 572 | 0.0152 | 0.9956 | 0.9956 | | 0.0081 | 2.0 | 1144 | 0.0141 | 0.9963 | 0.9963 | ### Framework versions - Transformers 4.51.0 - Pytorch 2.4.1 - Datasets 3.5.0 - Tokenizers 0.21.1