Upload log/log-decode-2022-04-08-22-02-12
Browse files
log/log-decode-2022-04-08-22-02-12
ADDED
|
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2022-04-08 22:02:12,850 INFO [decode.py:583] Decoding started
|
| 2 |
+
2022-04-08 22:02:12,851 INFO [decode.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'd7b02ab00b70c011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.18'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
|
| 3 |
+
2022-04-08 22:02:13,611 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
| 4 |
+
2022-04-08 22:02:13,897 INFO [decode.py:594] device: cuda:0
|
| 5 |
+
2022-04-08 22:02:19,463 INFO [decode.py:656] Loading pre-compiled G_4_gram.pt
|
| 6 |
+
2022-04-08 22:02:23,064 INFO [decode.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
|
| 7 |
+
2022-04-08 22:04:17,302 INFO [decode.py:699] Number of model parameters: 109226120
|
| 8 |
+
2022-04-08 22:04:17,303 INFO [asr_datamodule.py:372] About to get dev cuts
|
| 9 |
+
2022-04-08 22:04:21,114 INFO [decode.py:497] batch 0/?, cuts processed until now is 3
|
| 10 |
+
2022-04-08 22:06:56,367 INFO [decode.py:497] batch 100/?, cuts processed until now is 243
|
| 11 |
+
2022-04-08 22:09:33,967 INFO [decode.py:497] batch 200/?, cuts processed until now is 464
|
| 12 |
+
2022-04-08 22:12:05,730 INFO [decode.py:497] batch 300/?, cuts processed until now is 665
|
| 13 |
+
2022-04-08 22:13:23,989 INFO [decode.py:736] Caught exception:
|
| 14 |
+
CUDA out of memory. Tried to allocate 4.93 GiB (GPU 0; 31.75 GiB total capacity; 24.54 GiB already allocated; 3.87 GiB free; 26.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 15 |
+
|
| 16 |
+
2022-04-08 22:13:23,989 INFO [decode.py:743] num_arcs before pruning: 333034
|
| 17 |
+
2022-04-08 22:13:23,989 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 18 |
+
2022-04-08 22:13:24,010 INFO [decode.py:757] num_arcs after pruning: 7258
|
| 19 |
+
2022-04-08 22:14:38,171 INFO [decode.py:497] batch 400/?, cuts processed until now is 891
|
| 20 |
+
2022-04-08 22:17:05,640 INFO [decode.py:497] batch 500/?, cuts processed until now is 1098
|
| 21 |
+
2022-04-08 22:19:29,901 INFO [decode.py:497] batch 600/?, cuts processed until now is 1363
|
| 22 |
+
2022-04-08 22:20:05,953 INFO [decode.py:736] Caught exception:
|
| 23 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 24 |
+
|
| 25 |
+
2022-04-08 22:20:05,954 INFO [decode.py:743] num_arcs before pruning: 514392
|
| 26 |
+
2022-04-08 22:20:05,954 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 27 |
+
2022-04-08 22:20:05,966 INFO [decode.py:757] num_arcs after pruning: 13888
|
| 28 |
+
2022-04-08 22:22:02,765 INFO [decode.py:497] batch 700/?, cuts processed until now is 1626
|
| 29 |
+
2022-04-08 22:24:05,393 INFO [decode.py:736] Caught exception:
|
| 30 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.24 GiB already allocated; 7.07 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 31 |
+
|
| 32 |
+
2022-04-08 22:24:05,393 INFO [decode.py:743] num_arcs before pruning: 164808
|
| 33 |
+
2022-04-08 22:24:05,393 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 34 |
+
2022-04-08 22:24:05,404 INFO [decode.py:757] num_arcs after pruning: 8771
|
| 35 |
+
2022-04-08 22:24:40,652 INFO [decode.py:497] batch 800/?, cuts processed until now is 1870
|
| 36 |
+
2022-04-08 22:25:03,574 INFO [decode.py:736] Caught exception:
|
| 37 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.28 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 38 |
+
|
| 39 |
+
2022-04-08 22:25:03,575 INFO [decode.py:743] num_arcs before pruning: 267824
|
| 40 |
+
2022-04-08 22:25:03,575 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 41 |
+
2022-04-08 22:25:03,582 INFO [decode.py:757] num_arcs after pruning: 9250
|
| 42 |
+
2022-04-08 22:27:25,872 INFO [decode.py:497] batch 900/?, cuts processed until now is 2134
|
| 43 |
+
2022-04-08 22:29:45,824 INFO [decode.py:736] Caught exception:
|
| 44 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.45 GiB already allocated; 7.06 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 45 |
+
|
| 46 |
+
2022-04-08 22:29:45,825 INFO [decode.py:743] num_arcs before pruning: 236799
|
| 47 |
+
2022-04-08 22:29:45,825 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 48 |
+
2022-04-08 22:29:45,837 INFO [decode.py:757] num_arcs after pruning: 7885
|
| 49 |
+
2022-04-08 22:30:03,747 INFO [decode.py:497] batch 1000/?, cuts processed until now is 2380
|
| 50 |
+
2022-04-08 22:30:44,532 INFO [decode.py:736] Caught exception:
|
| 51 |
+
|
| 52 |
+
Some bad things happened. Please read the above error messages and stack
|
| 53 |
+
trace. If you are using Python, the following command may be helpful:
|
| 54 |
+
|
| 55 |
+
gdb --args python /path/to/your/code.py
|
| 56 |
+
|
| 57 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 58 |
+
a debug version of k2.).
|
| 59 |
+
|
| 60 |
+
If you are unable to fix it, please open an issue at:
|
| 61 |
+
|
| 62 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
2022-04-08 22:30:44,532 INFO [decode.py:743] num_arcs before pruning: 632546
|
| 66 |
+
2022-04-08 22:30:44,533 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 67 |
+
2022-04-08 22:30:44,585 INFO [decode.py:757] num_arcs after pruning: 10602
|
| 68 |
+
2022-04-08 22:32:41,978 INFO [decode.py:497] batch 1100/?, cuts processed until now is 2624
|
| 69 |
+
2022-04-08 22:34:54,199 INFO [decode.py:736] Caught exception:
|
| 70 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 5.68 GiB free; 24.72 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 71 |
+
|
| 72 |
+
2022-04-08 22:34:54,200 INFO [decode.py:743] num_arcs before pruning: 227558
|
| 73 |
+
2022-04-08 22:34:54,200 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 74 |
+
2022-04-08 22:34:54,218 INFO [decode.py:757] num_arcs after pruning: 8505
|
| 75 |
+
2022-04-08 22:35:25,806 INFO [decode.py:497] batch 1200/?, cuts processed until now is 2889
|
| 76 |
+
2022-04-08 22:38:28,827 INFO [decode.py:497] batch 1300/?, cuts processed until now is 3182
|
| 77 |
+
2022-04-08 22:39:35,318 INFO [decode.py:736] Caught exception:
|
| 78 |
+
CUDA out of memory. Tried to allocate 2.65 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 79 |
+
|
| 80 |
+
2022-04-08 22:39:35,318 INFO [decode.py:743] num_arcs before pruning: 348294
|
| 81 |
+
2022-04-08 22:39:35,318 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 82 |
+
2022-04-08 22:39:35,324 INFO [decode.py:757] num_arcs after pruning: 4422
|
| 83 |
+
2022-04-08 22:41:48,886 INFO [decode.py:497] batch 1400/?, cuts processed until now is 3491
|
| 84 |
+
2022-04-08 22:42:03,583 INFO [decode.py:736] Caught exception:
|
| 85 |
+
CUDA out of memory. Tried to allocate 4.53 GiB (GPU 0; 31.75 GiB total capacity; 24.43 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 86 |
+
|
| 87 |
+
2022-04-08 22:42:03,584 INFO [decode.py:743] num_arcs before pruning: 446338
|
| 88 |
+
2022-04-08 22:42:03,584 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 89 |
+
2022-04-08 22:42:03,592 INFO [decode.py:757] num_arcs after pruning: 13422
|
| 90 |
+
2022-04-08 22:44:41,081 INFO [decode.py:497] batch 1500/?, cuts processed until now is 3738
|
| 91 |
+
2022-04-08 22:44:48,819 INFO [decode.py:736] Caught exception:
|
| 92 |
+
CUDA out of memory. Tried to allocate 1.94 GiB (GPU 0; 31.75 GiB total capacity; 29.06 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 93 |
+
|
| 94 |
+
2022-04-08 22:44:48,820 INFO [decode.py:743] num_arcs before pruning: 263598
|
| 95 |
+
2022-04-08 22:44:48,820 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 96 |
+
2022-04-08 22:44:48,833 INFO [decode.py:757] num_arcs after pruning: 7847
|
| 97 |
+
2022-04-08 22:47:10,728 INFO [decode.py:497] batch 1600/?, cuts processed until now is 3970
|
| 98 |
+
2022-04-08 22:47:52,235 INFO [decode.py:736] Caught exception:
|
| 99 |
+
CUDA out of memory. Tried to allocate 5.20 GiB (GPU 0; 31.75 GiB total capacity; 24.71 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 100 |
+
|
| 101 |
+
2022-04-08 22:47:52,236 INFO [decode.py:743] num_arcs before pruning: 317009
|
| 102 |
+
2022-04-08 22:47:52,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 103 |
+
2022-04-08 22:47:52,252 INFO [decode.py:757] num_arcs after pruning: 9354
|
| 104 |
+
2022-04-08 22:49:32,370 INFO [decode.py:736] Caught exception:
|
| 105 |
+
CUDA out of memory. Tried to allocate 4.55 GiB (GPU 0; 31.75 GiB total capacity; 24.05 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 106 |
+
|
| 107 |
+
2022-04-08 22:49:32,371 INFO [decode.py:743] num_arcs before pruning: 136624
|
| 108 |
+
2022-04-08 22:49:32,371 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 109 |
+
2022-04-08 22:49:32,402 INFO [decode.py:757] num_arcs after pruning: 5456
|
| 110 |
+
2022-04-08 22:49:36,398 INFO [decode.py:497] batch 1700/?, cuts processed until now is 4192
|
| 111 |
+
2022-04-08 22:50:50,382 INFO [decode.py:736] Caught exception:
|
| 112 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.56 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 113 |
+
|
| 114 |
+
2022-04-08 22:50:50,383 INFO [decode.py:743] num_arcs before pruning: 303893
|
| 115 |
+
2022-04-08 22:50:50,383 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 116 |
+
2022-04-08 22:50:50,400 INFO [decode.py:757] num_arcs after pruning: 9312
|
| 117 |
+
2022-04-08 22:52:09,335 INFO [decode.py:497] batch 1800/?, cuts processed until now is 4416
|
| 118 |
+
2022-04-08 22:52:51,744 INFO [decode.py:736] Caught exception:
|
| 119 |
+
CUDA out of memory. Tried to allocate 5.02 GiB (GPU 0; 31.75 GiB total capacity; 26.25 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 120 |
+
|
| 121 |
+
2022-04-08 22:52:51,745 INFO [decode.py:743] num_arcs before pruning: 379292
|
| 122 |
+
2022-04-08 22:52:51,745 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 123 |
+
2022-04-08 22:52:51,751 INFO [decode.py:757] num_arcs after pruning: 14317
|
| 124 |
+
2022-04-08 22:54:33,478 INFO [decode.py:497] batch 1900/?, cuts processed until now is 4619
|
| 125 |
+
2022-04-08 22:56:34,371 INFO [decode.py:736] Caught exception:
|
| 126 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 127 |
+
|
| 128 |
+
2022-04-08 22:56:34,372 INFO [decode.py:743] num_arcs before pruning: 294097
|
| 129 |
+
2022-04-08 22:56:34,372 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 130 |
+
2022-04-08 22:56:34,389 INFO [decode.py:757] num_arcs after pruning: 5895
|
| 131 |
+
2022-04-08 22:56:47,967 INFO [decode.py:497] batch 2000/?, cuts processed until now is 4816
|
| 132 |
+
2022-04-08 22:58:06,236 INFO [decode.py:736] Caught exception:
|
| 133 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.41 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 134 |
+
|
| 135 |
+
2022-04-08 22:58:06,236 INFO [decode.py:743] num_arcs before pruning: 253855
|
| 136 |
+
2022-04-08 22:58:06,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 137 |
+
2022-04-08 22:58:06,253 INFO [decode.py:757] num_arcs after pruning: 9191
|
| 138 |
+
2022-04-08 22:58:17,534 INFO [decode.py:736] Caught exception:
|
| 139 |
+
CUDA out of memory. Tried to allocate 2.17 GiB (GPU 0; 31.75 GiB total capacity; 26.06 GiB already allocated; 1.56 GiB free; 28.83 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 140 |
+
|
| 141 |
+
2022-04-08 22:58:17,535 INFO [decode.py:743] num_arcs before pruning: 242689
|
| 142 |
+
2022-04-08 22:58:17,535 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 143 |
+
2022-04-08 22:58:17,549 INFO [decode.py:757] num_arcs after pruning: 4733
|
| 144 |
+
2022-04-08 22:58:32,154 INFO [decode.py:736] Caught exception:
|
| 145 |
+
CUDA out of memory. Tried to allocate 2.38 GiB (GPU 0; 31.75 GiB total capacity; 26.65 GiB already allocated; 1.57 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 146 |
+
|
| 147 |
+
2022-04-08 22:58:32,155 INFO [decode.py:743] num_arcs before pruning: 288302
|
| 148 |
+
2022-04-08 22:58:32,155 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 149 |
+
2022-04-08 22:58:32,164 INFO [decode.py:757] num_arcs after pruning: 5472
|
| 150 |
+
2022-04-08 22:59:15,988 INFO [decode.py:497] batch 2100/?, cuts processed until now is 4981
|
| 151 |
+
2022-04-08 23:00:31,937 INFO [decode.py:736] Caught exception:
|
| 152 |
+
|
| 153 |
+
Some bad things happened. Please read the above error messages and stack
|
| 154 |
+
trace. If you are using Python, the following command may be helpful:
|
| 155 |
+
|
| 156 |
+
gdb --args python /path/to/your/code.py
|
| 157 |
+
|
| 158 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 159 |
+
a debug version of k2.).
|
| 160 |
+
|
| 161 |
+
If you are unable to fix it, please open an issue at:
|
| 162 |
+
|
| 163 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
2022-04-08 23:00:31,937 INFO [decode.py:743] num_arcs before pruning: 745182
|
| 167 |
+
2022-04-08 23:00:31,937 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 168 |
+
2022-04-08 23:00:31,989 INFO [decode.py:757] num_arcs after pruning: 13933
|
| 169 |
+
2022-04-08 23:01:49,408 INFO [decode.py:497] batch 2200/?, cuts processed until now is 5132
|
| 170 |
+
2022-04-08 23:04:08,911 INFO [decode.py:497] batch 2300/?, cuts processed until now is 5273
|
| 171 |
+
2022-04-08 23:06:50,854 INFO [decode.py:497] batch 2400/?, cuts processed until now is 5388
|
| 172 |
+
2022-04-08 23:06:53,493 INFO [decode.py:736] Caught exception:
|
| 173 |
+
|
| 174 |
+
Some bad things happened. Please read the above error messages and stack
|
| 175 |
+
trace. If you are using Python, the following command may be helpful:
|
| 176 |
+
|
| 177 |
+
gdb --args python /path/to/your/code.py
|
| 178 |
+
|
| 179 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 180 |
+
a debug version of k2.).
|
| 181 |
+
|
| 182 |
+
If you are unable to fix it, please open an issue at:
|
| 183 |
+
|
| 184 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
2022-04-08 23:06:53,493 INFO [decode.py:743] num_arcs before pruning: 203946
|
| 188 |
+
2022-04-08 23:06:53,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 189 |
+
2022-04-08 23:06:53,545 INFO [decode.py:757] num_arcs after pruning: 7172
|
| 190 |
+
2022-04-08 23:09:08,764 INFO [decode.py:497] batch 2500/?, cuts processed until now is 5488
|
| 191 |
+
2022-04-08 23:10:26,345 INFO [decode.py:841] Caught exception:
|
| 192 |
+
CUDA out of memory. Tried to allocate 5.79 GiB (GPU 0; 31.75 GiB total capacity; 24.31 GiB already allocated; 1.58 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 193 |
+
|
| 194 |
+
2022-04-08 23:10:26,346 INFO [decode.py:843] num_paths before decreasing: 1000
|
| 195 |
+
2022-04-08 23:10:26,346 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 196 |
+
2022-04-08 23:10:26,346 INFO [decode.py:858] num_paths after decreasing: 500
|
| 197 |
+
2022-04-08 23:11:31,973 INFO [decode.py:497] batch 2600/?, cuts processed until now is 5588
|
| 198 |
+
2022-04-08 23:13:41,208 INFO [decode.py:497] batch 2700/?, cuts processed until now is 5688
|
| 199 |
+
2022-04-08 23:20:49,158 INFO [decode.py:567]
|
| 200 |
+
For dev, WER of different settings are:
|
| 201 |
+
ngram_lm_scale_0.6_attention_scale_1.5 10.46 best for dev
|
| 202 |
+
ngram_lm_scale_0.6_attention_scale_1.7 10.46
|
| 203 |
+
ngram_lm_scale_0.5_attention_scale_0.9 10.47
|
| 204 |
+
ngram_lm_scale_0.5_attention_scale_1.0 10.47
|
| 205 |
+
ngram_lm_scale_0.5_attention_scale_1.1 10.47
|
| 206 |
+
ngram_lm_scale_0.5_attention_scale_1.2 10.47
|
| 207 |
+
ngram_lm_scale_0.5_attention_scale_1.3 10.47
|
| 208 |
+
ngram_lm_scale_0.5_attention_scale_1.5 10.47
|
| 209 |
+
ngram_lm_scale_0.5_attention_scale_1.7 10.47
|
| 210 |
+
ngram_lm_scale_0.6_attention_scale_1.3 10.47
|
| 211 |
+
ngram_lm_scale_0.6_attention_scale_1.9 10.47
|
| 212 |
+
ngram_lm_scale_0.6_attention_scale_2.0 10.47
|
| 213 |
+
ngram_lm_scale_0.6_attention_scale_2.1 10.47
|
| 214 |
+
ngram_lm_scale_0.7_attention_scale_1.9 10.47
|
| 215 |
+
ngram_lm_scale_0.7_attention_scale_2.0 10.47
|
| 216 |
+
ngram_lm_scale_0.7_attention_scale_2.1 10.47
|
| 217 |
+
ngram_lm_scale_0.7_attention_scale_2.2 10.47
|
| 218 |
+
ngram_lm_scale_0.5_attention_scale_1.9 10.48
|
| 219 |
+
ngram_lm_scale_0.6_attention_scale_1.1 10.48
|
| 220 |
+
ngram_lm_scale_0.6_attention_scale_1.2 10.48
|
| 221 |
+
ngram_lm_scale_0.6_attention_scale_2.2 10.48
|
| 222 |
+
ngram_lm_scale_0.6_attention_scale_2.3 10.48
|
| 223 |
+
ngram_lm_scale_0.7_attention_scale_1.5 10.48
|
| 224 |
+
ngram_lm_scale_0.7_attention_scale_1.7 10.48
|
| 225 |
+
ngram_lm_scale_0.7_attention_scale_2.3 10.48
|
| 226 |
+
ngram_lm_scale_0.7_attention_scale_2.5 10.48
|
| 227 |
+
ngram_lm_scale_0.9_attention_scale_4.0 10.48
|
| 228 |
+
ngram_lm_scale_0.3_attention_scale_1.1 10.49
|
| 229 |
+
ngram_lm_scale_0.5_attention_scale_0.6 10.49
|
| 230 |
+
ngram_lm_scale_0.5_attention_scale_0.7 10.49
|
| 231 |
+
ngram_lm_scale_0.5_attention_scale_2.0 10.49
|
| 232 |
+
ngram_lm_scale_0.5_attention_scale_2.1 10.49
|
| 233 |
+
ngram_lm_scale_0.5_attention_scale_2.5 10.49
|
| 234 |
+
ngram_lm_scale_0.5_attention_scale_3.0 10.49
|
| 235 |
+
ngram_lm_scale_0.6_attention_scale_1.0 10.49
|
| 236 |
+
ngram_lm_scale_0.6_attention_scale_2.5 10.49
|
| 237 |
+
ngram_lm_scale_0.6_attention_scale_3.0 10.49
|
| 238 |
+
ngram_lm_scale_0.7_attention_scale_1.3 10.49
|
| 239 |
+
ngram_lm_scale_0.7_attention_scale_3.0 10.49
|
| 240 |
+
ngram_lm_scale_0.7_attention_scale_4.0 10.49
|
| 241 |
+
ngram_lm_scale_0.9_attention_scale_3.0 10.49
|
| 242 |
+
ngram_lm_scale_0.9_attention_scale_5.0 10.49
|
| 243 |
+
ngram_lm_scale_1.0_attention_scale_4.0 10.49
|
| 244 |
+
ngram_lm_scale_1.0_attention_scale_5.0 10.49
|
| 245 |
+
ngram_lm_scale_1.1_attention_scale_4.0 10.49
|
| 246 |
+
ngram_lm_scale_1.1_attention_scale_5.0 10.49
|
| 247 |
+
ngram_lm_scale_1.2_attention_scale_4.0 10.49
|
| 248 |
+
ngram_lm_scale_1.2_attention_scale_5.0 10.49
|
| 249 |
+
ngram_lm_scale_1.3_attention_scale_5.0 10.49
|
| 250 |
+
ngram_lm_scale_1.5_attention_scale_5.0 10.49
|
| 251 |
+
ngram_lm_scale_0.3_attention_scale_0.7 10.5
|
| 252 |
+
ngram_lm_scale_0.3_attention_scale_0.9 10.5
|
| 253 |
+
ngram_lm_scale_0.3_attention_scale_1.0 10.5
|
| 254 |
+
ngram_lm_scale_0.3_attention_scale_1.2 10.5
|
| 255 |
+
ngram_lm_scale_0.3_attention_scale_1.3 10.5
|
| 256 |
+
ngram_lm_scale_0.3_attention_scale_1.5 10.5
|
| 257 |
+
ngram_lm_scale_0.5_attention_scale_2.2 10.5
|
| 258 |
+
ngram_lm_scale_0.5_attention_scale_2.3 10.5
|
| 259 |
+
ngram_lm_scale_0.6_attention_scale_0.7 10.5
|
| 260 |
+
ngram_lm_scale_0.6_attention_scale_0.9 10.5
|
| 261 |
+
ngram_lm_scale_0.7_attention_scale_1.0 10.5
|
| 262 |
+
ngram_lm_scale_0.7_attention_scale_1.1 10.5
|
| 263 |
+
ngram_lm_scale_0.7_attention_scale_5.0 10.5
|
| 264 |
+
ngram_lm_scale_0.9_attention_scale_2.1 10.5
|
| 265 |
+
ngram_lm_scale_1.0_attention_scale_3.0 10.5
|
| 266 |
+
ngram_lm_scale_1.3_attention_scale_4.0 10.5
|
| 267 |
+
ngram_lm_scale_1.5_attention_scale_4.0 10.5
|
| 268 |
+
ngram_lm_scale_0.3_attention_scale_1.7 10.51
|
| 269 |
+
ngram_lm_scale_0.3_attention_scale_1.9 10.51
|
| 270 |
+
ngram_lm_scale_0.3_attention_scale_2.0 10.51
|
| 271 |
+
ngram_lm_scale_0.3_attention_scale_2.1 10.51
|
| 272 |
+
ngram_lm_scale_0.3_attention_scale_2.2 10.51
|
| 273 |
+
ngram_lm_scale_0.3_attention_scale_2.3 10.51
|
| 274 |
+
ngram_lm_scale_0.3_attention_scale_2.5 10.51
|
| 275 |
+
ngram_lm_scale_0.3_attention_scale_3.0 10.51
|
| 276 |
+
ngram_lm_scale_0.3_attention_scale_4.0 10.51
|
| 277 |
+
ngram_lm_scale_0.5_attention_scale_0.5 10.51
|
| 278 |
+
ngram_lm_scale_0.5_attention_scale_4.0 10.51
|
| 279 |
+
ngram_lm_scale_0.5_attention_scale_5.0 10.51
|
| 280 |
+
ngram_lm_scale_0.6_attention_scale_4.0 10.51
|
| 281 |
+
ngram_lm_scale_0.6_attention_scale_5.0 10.51
|
| 282 |
+
ngram_lm_scale_0.7_attention_scale_1.2 10.51
|
| 283 |
+
ngram_lm_scale_0.9_attention_scale_2.0 10.51
|
| 284 |
+
ngram_lm_scale_0.9_attention_scale_2.2 10.51
|
| 285 |
+
ngram_lm_scale_0.9_attention_scale_2.3 10.51
|
| 286 |
+
ngram_lm_scale_0.9_attention_scale_2.5 10.51
|
| 287 |
+
ngram_lm_scale_1.0_attention_scale_2.2 10.51
|
| 288 |
+
ngram_lm_scale_1.0_attention_scale_2.3 10.51
|
| 289 |
+
ngram_lm_scale_1.0_attention_scale_2.5 10.51
|
| 290 |
+
ngram_lm_scale_1.1_attention_scale_2.5 10.51
|
| 291 |
+
ngram_lm_scale_1.2_attention_scale_3.0 10.51
|
| 292 |
+
ngram_lm_scale_1.7_attention_scale_5.0 10.51
|
| 293 |
+
ngram_lm_scale_0.05_attention_scale_2.5 10.52
|
| 294 |
+
ngram_lm_scale_0.05_attention_scale_3.0 10.52
|
| 295 |
+
ngram_lm_scale_0.08_attention_scale_2.5 10.52
|
| 296 |
+
ngram_lm_scale_0.08_attention_scale_4.0 10.52
|
| 297 |
+
ngram_lm_scale_0.08_attention_scale_5.0 10.52
|
| 298 |
+
ngram_lm_scale_0.1_attention_scale_2.5 10.52
|
| 299 |
+
ngram_lm_scale_0.1_attention_scale_3.0 10.52
|
| 300 |
+
ngram_lm_scale_0.1_attention_scale_4.0 10.52
|
| 301 |
+
ngram_lm_scale_0.1_attention_scale_5.0 10.52
|
| 302 |
+
ngram_lm_scale_0.3_attention_scale_0.5 10.52
|
| 303 |
+
ngram_lm_scale_0.3_attention_scale_0.6 10.52
|
| 304 |
+
ngram_lm_scale_0.3_attention_scale_5.0 10.52
|
| 305 |
+
ngram_lm_scale_0.6_attention_scale_0.6 10.52
|
| 306 |
+
ngram_lm_scale_0.7_attention_scale_0.9 10.52
|
| 307 |
+
ngram_lm_scale_0.9_attention_scale_1.7 10.52
|
| 308 |
+
ngram_lm_scale_0.9_attention_scale_1.9 10.52
|
| 309 |
+
ngram_lm_scale_1.0_attention_scale_2.0 10.52
|
| 310 |
+
ngram_lm_scale_1.0_attention_scale_2.1 10.52
|
| 311 |
+
ngram_lm_scale_1.1_attention_scale_2.3 10.52
|
| 312 |
+
ngram_lm_scale_1.1_attention_scale_3.0 10.52
|
| 313 |
+
ngram_lm_scale_1.9_attention_scale_5.0 10.52
|
| 314 |
+
ngram_lm_scale_0.01_attention_scale_2.5 10.53
|
| 315 |
+
ngram_lm_scale_0.01_attention_scale_3.0 10.53
|
| 316 |
+
ngram_lm_scale_0.01_attention_scale_4.0 10.53
|
| 317 |
+
ngram_lm_scale_0.01_attention_scale_5.0 10.53
|
| 318 |
+
ngram_lm_scale_0.05_attention_scale_1.9 10.53
|
| 319 |
+
ngram_lm_scale_0.05_attention_scale_2.1 10.53
|
| 320 |
+
ngram_lm_scale_0.05_attention_scale_2.3 10.53
|
| 321 |
+
ngram_lm_scale_0.05_attention_scale_4.0 10.53
|
| 322 |
+
ngram_lm_scale_0.05_attention_scale_5.0 10.53
|
| 323 |
+
ngram_lm_scale_0.08_attention_scale_1.9 10.53
|
| 324 |
+
ngram_lm_scale_0.08_attention_scale_2.1 10.53
|
| 325 |
+
ngram_lm_scale_0.08_attention_scale_2.2 10.53
|
| 326 |
+
ngram_lm_scale_0.08_attention_scale_2.3 10.53
|
| 327 |
+
ngram_lm_scale_0.08_attention_scale_3.0 10.53
|
| 328 |
+
ngram_lm_scale_0.1_attention_scale_2.2 10.53
|
| 329 |
+
ngram_lm_scale_0.1_attention_scale_2.3 10.53
|
| 330 |
+
ngram_lm_scale_0.3_attention_scale_0.3 10.53
|
| 331 |
+
ngram_lm_scale_0.9_attention_scale_1.5 10.53
|
| 332 |
+
ngram_lm_scale_1.0_attention_scale_1.9 10.53
|
| 333 |
+
ngram_lm_scale_1.1_attention_scale_2.1 10.53
|
| 334 |
+
ngram_lm_scale_1.1_attention_scale_2.2 10.53
|
| 335 |
+
ngram_lm_scale_1.2_attention_scale_2.5 10.53
|
| 336 |
+
ngram_lm_scale_1.3_attention_scale_3.0 10.53
|
| 337 |
+
ngram_lm_scale_1.7_attention_scale_4.0 10.53
|
| 338 |
+
ngram_lm_scale_2.0_attention_scale_5.0 10.53
|
| 339 |
+
ngram_lm_scale_0.01_attention_scale_2.2 10.54
|
| 340 |
+
ngram_lm_scale_0.01_attention_scale_2.3 10.54
|
| 341 |
+
ngram_lm_scale_0.05_attention_scale_1.7 10.54
|
| 342 |
+
ngram_lm_scale_0.05_attention_scale_2.0 10.54
|
| 343 |
+
ngram_lm_scale_0.05_attention_scale_2.2 10.54
|
| 344 |
+
ngram_lm_scale_0.08_attention_scale_1.2 10.54
|
| 345 |
+
ngram_lm_scale_0.08_attention_scale_1.3 10.54
|
| 346 |
+
ngram_lm_scale_0.08_attention_scale_1.7 10.54
|
| 347 |
+
ngram_lm_scale_0.08_attention_scale_2.0 10.54
|
| 348 |
+
ngram_lm_scale_0.1_attention_scale_1.5 10.54
|
| 349 |
+
ngram_lm_scale_0.1_attention_scale_1.7 10.54
|
| 350 |
+
ngram_lm_scale_0.1_attention_scale_1.9 10.54
|
| 351 |
+
ngram_lm_scale_0.1_attention_scale_2.0 10.54
|
| 352 |
+
ngram_lm_scale_0.1_attention_scale_2.1 10.54
|
| 353 |
+
ngram_lm_scale_0.9_attention_scale_1.2 10.54
|
| 354 |
+
ngram_lm_scale_1.0_attention_scale_1.7 10.54
|
| 355 |
+
ngram_lm_scale_1.2_attention_scale_2.3 10.54
|
| 356 |
+
ngram_lm_scale_1.3_attention_scale_2.3 10.54
|
| 357 |
+
ngram_lm_scale_1.5_attention_scale_3.0 10.54
|
| 358 |
+
ngram_lm_scale_0.01_attention_scale_1.9 10.55
|
| 359 |
+
ngram_lm_scale_0.01_attention_scale_2.0 10.55
|
| 360 |
+
ngram_lm_scale_0.01_attention_scale_2.1 10.55
|
| 361 |
+
ngram_lm_scale_0.05_attention_scale_1.2 10.55
|
| 362 |
+
ngram_lm_scale_0.05_attention_scale_1.3 10.55
|
| 363 |
+
ngram_lm_scale_0.08_attention_scale_1.1 10.55
|
| 364 |
+
ngram_lm_scale_0.08_attention_scale_1.5 10.55
|
| 365 |
+
ngram_lm_scale_0.1_attention_scale_1.1 10.55
|
| 366 |
+
ngram_lm_scale_0.1_attention_scale_1.2 10.55
|
| 367 |
+
ngram_lm_scale_0.1_attention_scale_1.3 10.55
|
| 368 |
+
ngram_lm_scale_0.6_attention_scale_0.5 10.55
|
| 369 |
+
ngram_lm_scale_0.7_attention_scale_0.7 10.55
|
| 370 |
+
ngram_lm_scale_0.9_attention_scale_1.3 10.55
|
| 371 |
+
ngram_lm_scale_1.0_attention_scale_1.5 10.55
|
| 372 |
+
ngram_lm_scale_1.1_attention_scale_2.0 10.55
|
| 373 |
+
ngram_lm_scale_1.2_attention_scale_2.0 10.55
|
| 374 |
+
ngram_lm_scale_1.2_attention_scale_2.1 10.55
|
| 375 |
+
ngram_lm_scale_1.2_attention_scale_2.2 10.55
|
| 376 |
+
ngram_lm_scale_1.3_attention_scale_2.2 10.55
|
| 377 |
+
ngram_lm_scale_1.3_attention_scale_2.5 10.55
|
| 378 |
+
ngram_lm_scale_2.1_attention_scale_5.0 10.55
|
| 379 |
+
ngram_lm_scale_0.01_attention_scale_1.1 10.56
|
| 380 |
+
ngram_lm_scale_0.01_attention_scale_1.3 10.56
|
| 381 |
+
ngram_lm_scale_0.01_attention_scale_1.7 10.56
|
| 382 |
+
ngram_lm_scale_0.05_attention_scale_1.1 10.56
|
| 383 |
+
ngram_lm_scale_0.05_attention_scale_1.5 10.56
|
| 384 |
+
ngram_lm_scale_0.08_attention_scale_1.0 10.56
|
| 385 |
+
ngram_lm_scale_0.1_attention_scale_1.0 10.56
|
| 386 |
+
ngram_lm_scale_0.7_attention_scale_0.6 10.56
|
| 387 |
+
ngram_lm_scale_0.9_attention_scale_1.1 10.56
|
| 388 |
+
ngram_lm_scale_1.0_attention_scale_1.3 10.56
|
| 389 |
+
ngram_lm_scale_1.1_attention_scale_1.7 10.56
|
| 390 |
+
ngram_lm_scale_1.1_attention_scale_1.9 10.56
|
| 391 |
+
ngram_lm_scale_1.2_attention_scale_1.9 10.56
|
| 392 |
+
ngram_lm_scale_1.3_attention_scale_2.0 10.56
|
| 393 |
+
ngram_lm_scale_1.9_attention_scale_4.0 10.56
|
| 394 |
+
ngram_lm_scale_2.2_attention_scale_5.0 10.56
|
| 395 |
+
ngram_lm_scale_0.01_attention_scale_1.2 10.57
|
| 396 |
+
ngram_lm_scale_0.01_attention_scale_1.5 10.57
|
| 397 |
+
ngram_lm_scale_0.05_attention_scale_1.0 10.57
|
| 398 |
+
ngram_lm_scale_0.1_attention_scale_0.5 10.57
|
| 399 |
+
ngram_lm_scale_0.1_attention_scale_0.7 10.57
|
| 400 |
+
ngram_lm_scale_0.1_attention_scale_0.9 10.57
|
| 401 |
+
ngram_lm_scale_0.5_attention_scale_0.3 10.57
|
| 402 |
+
ngram_lm_scale_0.9_attention_scale_1.0 10.57
|
| 403 |
+
ngram_lm_scale_1.1_attention_scale_1.5 10.57
|
| 404 |
+
ngram_lm_scale_1.2_attention_scale_1.7 10.57
|
| 405 |
+
ngram_lm_scale_1.3_attention_scale_2.1 10.57
|
| 406 |
+
ngram_lm_scale_0.01_attention_scale_1.0 10.58
|
| 407 |
+
ngram_lm_scale_0.05_attention_scale_0.9 10.58
|
| 408 |
+
ngram_lm_scale_0.08_attention_scale_0.7 10.58
|
| 409 |
+
ngram_lm_scale_0.08_attention_scale_0.9 10.58
|
| 410 |
+
ngram_lm_scale_0.1_attention_scale_0.6 10.58
|
| 411 |
+
ngram_lm_scale_0.3_attention_scale_0.1 10.58
|
| 412 |
+
ngram_lm_scale_0.9_attention_scale_0.9 10.58
|
| 413 |
+
ngram_lm_scale_1.0_attention_scale_1.2 10.58
|
| 414 |
+
ngram_lm_scale_1.3_attention_scale_1.9 10.58
|
| 415 |
+
ngram_lm_scale_1.5_attention_scale_2.5 10.58
|
| 416 |
+
ngram_lm_scale_2.0_attention_scale_4.0 10.58
|
| 417 |
+
ngram_lm_scale_0.01_attention_scale_0.9 10.59
|
| 418 |
+
ngram_lm_scale_0.08_attention_scale_0.5 10.59
|
| 419 |
+
ngram_lm_scale_0.08_attention_scale_0.6 10.59
|
| 420 |
+
ngram_lm_scale_0.1_attention_scale_0.3 10.59
|
| 421 |
+
ngram_lm_scale_0.3_attention_scale_0.08 10.59
|
| 422 |
+
ngram_lm_scale_0.6_attention_scale_0.3 10.59
|
| 423 |
+
ngram_lm_scale_0.7_attention_scale_0.5 10.59
|
| 424 |
+
ngram_lm_scale_1.7_attention_scale_3.0 10.59
|
| 425 |
+
ngram_lm_scale_2.3_attention_scale_5.0 10.59
|
| 426 |
+
ngram_lm_scale_0.05_attention_scale_0.6 10.6
|
| 427 |
+
ngram_lm_scale_0.05_attention_scale_0.7 10.6
|
| 428 |
+
ngram_lm_scale_0.08_attention_scale_0.3 10.6
|
| 429 |
+
ngram_lm_scale_0.3_attention_scale_0.05 10.6
|
| 430 |
+
ngram_lm_scale_1.0_attention_scale_1.1 10.6
|
| 431 |
+
ngram_lm_scale_1.1_attention_scale_1.3 10.6
|
| 432 |
+
ngram_lm_scale_1.2_attention_scale_1.5 10.6
|
| 433 |
+
ngram_lm_scale_1.5_attention_scale_2.3 10.6
|
| 434 |
+
ngram_lm_scale_0.01_attention_scale_0.7 10.61
|
| 435 |
+
ngram_lm_scale_1.3_attention_scale_1.7 10.61
|
| 436 |
+
ngram_lm_scale_0.01_attention_scale_0.6 10.62
|
| 437 |
+
ngram_lm_scale_0.05_attention_scale_0.3 10.62
|
| 438 |
+
ngram_lm_scale_0.05_attention_scale_0.5 10.62
|
| 439 |
+
ngram_lm_scale_0.1_attention_scale_0.1 10.62
|
| 440 |
+
ngram_lm_scale_2.1_attention_scale_4.0 10.62
|
| 441 |
+
ngram_lm_scale_0.01_attention_scale_0.5 10.63
|
| 442 |
+
ngram_lm_scale_1.0_attention_scale_1.0 10.63
|
| 443 |
+
ngram_lm_scale_1.5_attention_scale_2.2 10.63
|
| 444 |
+
ngram_lm_scale_2.5_attention_scale_5.0 10.63
|
| 445 |
+
ngram_lm_scale_0.08_attention_scale_0.1 10.64
|
| 446 |
+
ngram_lm_scale_0.1_attention_scale_0.08 10.64
|
| 447 |
+
ngram_lm_scale_0.3_attention_scale_0.01 10.64
|
| 448 |
+
ngram_lm_scale_1.1_attention_scale_1.2 10.64
|
| 449 |
+
ngram_lm_scale_0.01_attention_scale_0.3 10.65
|
| 450 |
+
ngram_lm_scale_0.5_attention_scale_0.1 10.65
|
| 451 |
+
ngram_lm_scale_0.7_attention_scale_0.3 10.65
|
| 452 |
+
ngram_lm_scale_1.5_attention_scale_2.1 10.65
|
| 453 |
+
ngram_lm_scale_0.08_attention_scale_0.08 10.66
|
| 454 |
+
ngram_lm_scale_0.1_attention_scale_0.05 10.66
|
| 455 |
+
ngram_lm_scale_0.5_attention_scale_0.08 10.66
|
| 456 |
+
ngram_lm_scale_0.9_attention_scale_0.7 10.66
|
| 457 |
+
ngram_lm_scale_2.2_attention_scale_4.0 10.66
|
| 458 |
+
ngram_lm_scale_0.1_attention_scale_0.01 10.67
|
| 459 |
+
ngram_lm_scale_1.0_attention_scale_0.9 10.67
|
| 460 |
+
ngram_lm_scale_1.1_attention_scale_1.1 10.67
|
| 461 |
+
ngram_lm_scale_1.7_attention_scale_2.5 10.67
|
| 462 |
+
ngram_lm_scale_0.05_attention_scale_0.1 10.68
|
| 463 |
+
ngram_lm_scale_0.5_attention_scale_0.05 10.68
|
| 464 |
+
ngram_lm_scale_1.5_attention_scale_2.0 10.68
|
| 465 |
+
ngram_lm_scale_0.05_attention_scale_0.08 10.69
|
| 466 |
+
ngram_lm_scale_0.08_attention_scale_0.05 10.69
|
| 467 |
+
ngram_lm_scale_1.2_attention_scale_1.3 10.69
|
| 468 |
+
ngram_lm_scale_1.9_attention_scale_3.0 10.69
|
| 469 |
+
ngram_lm_scale_0.08_attention_scale_0.01 10.7
|
| 470 |
+
ngram_lm_scale_0.6_attention_scale_0.1 10.7
|
| 471 |
+
ngram_lm_scale_1.3_attention_scale_1.5 10.7
|
| 472 |
+
ngram_lm_scale_2.3_attention_scale_4.0 10.7
|
| 473 |
+
ngram_lm_scale_0.05_attention_scale_0.05 10.71
|
| 474 |
+
ngram_lm_scale_0.5_attention_scale_0.01 10.71
|
| 475 |
+
ngram_lm_scale_0.9_attention_scale_0.6 10.71
|
| 476 |
+
ngram_lm_scale_1.1_attention_scale_1.0 10.71
|
| 477 |
+
ngram_lm_scale_1.5_attention_scale_1.9 10.71
|
| 478 |
+
ngram_lm_scale_0.01_attention_scale_0.1 10.72
|
| 479 |
+
ngram_lm_scale_0.01_attention_scale_0.08 10.73
|
| 480 |
+
ngram_lm_scale_0.05_attention_scale_0.01 10.73
|
| 481 |
+
ngram_lm_scale_0.6_attention_scale_0.08 10.73
|
| 482 |
+
ngram_lm_scale_1.2_attention_scale_1.2 10.73
|
| 483 |
+
ngram_lm_scale_0.01_attention_scale_0.05 10.75
|
| 484 |
+
ngram_lm_scale_0.9_attention_scale_0.5 10.75
|
| 485 |
+
ngram_lm_scale_1.0_attention_scale_0.7 10.75
|
| 486 |
+
ngram_lm_scale_1.1_attention_scale_0.9 10.75
|
| 487 |
+
ngram_lm_scale_1.2_attention_scale_1.1 10.75
|
| 488 |
+
ngram_lm_scale_1.3_attention_scale_1.3 10.76
|
| 489 |
+
ngram_lm_scale_1.7_attention_scale_2.3 10.76
|
| 490 |
+
ngram_lm_scale_2.0_attention_scale_3.0 10.77
|
| 491 |
+
ngram_lm_scale_0.6_attention_scale_0.05 10.78
|
| 492 |
+
ngram_lm_scale_0.01_attention_scale_0.01 10.79
|
| 493 |
+
ngram_lm_scale_1.5_attention_scale_1.7 10.79
|
| 494 |
+
ngram_lm_scale_1.7_attention_scale_2.2 10.79
|
| 495 |
+
ngram_lm_scale_1.2_attention_scale_1.0 10.8
|
| 496 |
+
ngram_lm_scale_1.3_attention_scale_1.2 10.8
|
| 497 |
+
ngram_lm_scale_2.5_attention_scale_4.0 10.81
|
| 498 |
+
ngram_lm_scale_1.7_attention_scale_2.1 10.82
|
| 499 |
+
ngram_lm_scale_1.0_attention_scale_0.6 10.83
|
| 500 |
+
ngram_lm_scale_2.1_attention_scale_3.0 10.84
|
| 501 |
+
ngram_lm_scale_0.6_attention_scale_0.01 10.85
|
| 502 |
+
ngram_lm_scale_1.7_attention_scale_2.0 10.85
|
| 503 |
+
ngram_lm_scale_1.9_attention_scale_2.5 10.85
|
| 504 |
+
ngram_lm_scale_3.0_attention_scale_5.0 10.86
|
| 505 |
+
ngram_lm_scale_1.3_attention_scale_1.1 10.87
|
| 506 |
+
ngram_lm_scale_0.7_attention_scale_0.1 10.88
|
| 507 |
+
ngram_lm_scale_1.5_attention_scale_1.5 10.88
|
| 508 |
+
ngram_lm_scale_1.2_attention_scale_0.9 10.89
|
| 509 |
+
ngram_lm_scale_1.7_attention_scale_1.9 10.89
|
| 510 |
+
ngram_lm_scale_2.2_attention_scale_3.0 10.9
|
| 511 |
+
ngram_lm_scale_1.1_attention_scale_0.7 10.91
|
| 512 |
+
ngram_lm_scale_1.9_attention_scale_2.3 10.91
|
| 513 |
+
ngram_lm_scale_2.0_attention_scale_2.5 10.91
|
| 514 |
+
ngram_lm_scale_0.7_attention_scale_0.08 10.92
|
| 515 |
+
ngram_lm_scale_0.7_attention_scale_0.05 10.96
|
| 516 |
+
ngram_lm_scale_1.0_attention_scale_0.5 10.96
|
| 517 |
+
ngram_lm_scale_1.9_attention_scale_2.2 10.97
|
| 518 |
+
ngram_lm_scale_2.3_attention_scale_3.0 10.97
|
| 519 |
+
ngram_lm_scale_1.3_attention_scale_1.0 10.99
|
| 520 |
+
ngram_lm_scale_1.7_attention_scale_1.7 11.01
|
| 521 |
+
ngram_lm_scale_2.1_attention_scale_2.5 11.02
|
| 522 |
+
ngram_lm_scale_0.9_attention_scale_0.3 11.03
|
| 523 |
+
ngram_lm_scale_1.9_attention_scale_2.1 11.03
|
| 524 |
+
ngram_lm_scale_0.7_attention_scale_0.01 11.04
|
| 525 |
+
ngram_lm_scale_1.5_attention_scale_1.3 11.04
|
| 526 |
+
ngram_lm_scale_2.0_attention_scale_2.3 11.04
|
| 527 |
+
ngram_lm_scale_1.1_attention_scale_0.6 11.05
|
| 528 |
+
ngram_lm_scale_1.9_attention_scale_2.0 11.1
|
| 529 |
+
ngram_lm_scale_2.0_attention_scale_2.2 11.1
|
| 530 |
+
ngram_lm_scale_1.3_attention_scale_0.9 11.11
|
| 531 |
+
ngram_lm_scale_1.2_attention_scale_0.7 11.14
|
| 532 |
+
ngram_lm_scale_1.5_attention_scale_1.2 11.15
|
| 533 |
+
ngram_lm_scale_2.2_attention_scale_2.5 11.16
|
| 534 |
+
ngram_lm_scale_2.1_attention_scale_2.3 11.17
|
| 535 |
+
ngram_lm_scale_3.0_attention_scale_4.0 11.17
|
| 536 |
+
ngram_lm_scale_1.9_attention_scale_1.9 11.18
|
| 537 |
+
ngram_lm_scale_2.0_attention_scale_2.1 11.18
|
| 538 |
+
ngram_lm_scale_1.1_attention_scale_0.5 11.19
|
| 539 |
+
ngram_lm_scale_2.5_attention_scale_3.0 11.19
|
| 540 |
+
ngram_lm_scale_1.7_attention_scale_1.5 11.21
|
| 541 |
+
ngram_lm_scale_2.1_attention_scale_2.2 11.25
|
| 542 |
+
ngram_lm_scale_1.2_attention_scale_0.6 11.26
|
| 543 |
+
ngram_lm_scale_1.5_attention_scale_1.1 11.26
|
| 544 |
+
ngram_lm_scale_2.0_attention_scale_2.0 11.26
|
| 545 |
+
ngram_lm_scale_1.0_attention_scale_0.3 11.29
|
| 546 |
+
ngram_lm_scale_2.3_attention_scale_2.5 11.3
|
| 547 |
+
ngram_lm_scale_2.2_attention_scale_2.3 11.31
|
| 548 |
+
ngram_lm_scale_2.1_attention_scale_2.1 11.32
|
| 549 |
+
ngram_lm_scale_2.0_attention_scale_1.9 11.34
|
| 550 |
+
ngram_lm_scale_1.3_attention_scale_0.7 11.36
|
| 551 |
+
ngram_lm_scale_1.9_attention_scale_1.7 11.37
|
| 552 |
+
ngram_lm_scale_1.5_attention_scale_1.0 11.4
|
| 553 |
+
ngram_lm_scale_2.2_attention_scale_2.2 11.4
|
| 554 |
+
ngram_lm_scale_2.1_attention_scale_2.0 11.41
|
| 555 |
+
ngram_lm_scale_0.9_attention_scale_0.1 11.42
|
| 556 |
+
ngram_lm_scale_1.7_attention_scale_1.3 11.44
|
| 557 |
+
ngram_lm_scale_1.2_attention_scale_0.5 11.45
|
| 558 |
+
ngram_lm_scale_0.9_attention_scale_0.08 11.47
|
| 559 |
+
ngram_lm_scale_2.3_attention_scale_2.3 11.48
|
| 560 |
+
ngram_lm_scale_2.2_attention_scale_2.1 11.51
|
| 561 |
+
ngram_lm_scale_2.1_attention_scale_1.9 11.54
|
| 562 |
+
ngram_lm_scale_1.3_attention_scale_0.6 11.55
|
| 563 |
+
ngram_lm_scale_1.5_attention_scale_0.9 11.56
|
| 564 |
+
ngram_lm_scale_0.9_attention_scale_0.05 11.57
|
| 565 |
+
ngram_lm_scale_2.0_attention_scale_1.7 11.57
|
| 566 |
+
ngram_lm_scale_2.3_attention_scale_2.2 11.58
|
| 567 |
+
ngram_lm_scale_1.1_attention_scale_0.3 11.59
|
| 568 |
+
ngram_lm_scale_1.7_attention_scale_1.2 11.59
|
| 569 |
+
ngram_lm_scale_1.9_attention_scale_1.5 11.63
|
| 570 |
+
ngram_lm_scale_2.2_attention_scale_2.0 11.63
|
| 571 |
+
ngram_lm_scale_2.5_attention_scale_2.5 11.63
|
| 572 |
+
ngram_lm_scale_4.0_attention_scale_5.0 11.67
|
| 573 |
+
ngram_lm_scale_2.3_attention_scale_2.1 11.7
|
| 574 |
+
ngram_lm_scale_0.9_attention_scale_0.01 11.71
|
| 575 |
+
ngram_lm_scale_2.2_attention_scale_1.9 11.73
|
| 576 |
+
ngram_lm_scale_1.3_attention_scale_0.5 11.76
|
| 577 |
+
ngram_lm_scale_1.7_attention_scale_1.1 11.76
|
| 578 |
+
ngram_lm_scale_1.0_attention_scale_0.1 11.78
|
| 579 |
+
ngram_lm_scale_2.1_attention_scale_1.7 11.8
|
| 580 |
+
ngram_lm_scale_2.3_attention_scale_2.0 11.8
|
| 581 |
+
ngram_lm_scale_2.5_attention_scale_2.3 11.83
|
| 582 |
+
ngram_lm_scale_2.0_attention_scale_1.5 11.86
|
| 583 |
+
ngram_lm_scale_1.0_attention_scale_0.08 11.89
|
| 584 |
+
ngram_lm_scale_1.9_attention_scale_1.3 11.93
|
| 585 |
+
ngram_lm_scale_3.0_attention_scale_3.0 11.94
|
| 586 |
+
ngram_lm_scale_1.2_attention_scale_0.3 11.95
|
| 587 |
+
ngram_lm_scale_1.7_attention_scale_1.0 11.95
|
| 588 |
+
ngram_lm_scale_2.3_attention_scale_1.9 11.95
|
| 589 |
+
ngram_lm_scale_2.5_attention_scale_2.2 11.96
|
| 590 |
+
ngram_lm_scale_1.5_attention_scale_0.7 11.98
|
| 591 |
+
ngram_lm_scale_1.0_attention_scale_0.05 12.0
|
| 592 |
+
ngram_lm_scale_2.2_attention_scale_1.7 12.02
|
| 593 |
+
ngram_lm_scale_2.1_attention_scale_1.5 12.09
|
| 594 |
+
ngram_lm_scale_2.5_attention_scale_2.1 12.09
|
| 595 |
+
ngram_lm_scale_1.9_attention_scale_1.2 12.12
|
| 596 |
+
ngram_lm_scale_1.7_attention_scale_0.9 12.16
|
| 597 |
+
ngram_lm_scale_1.0_attention_scale_0.01 12.19
|
| 598 |
+
ngram_lm_scale_2.0_attention_scale_1.3 12.2
|
| 599 |
+
ngram_lm_scale_2.5_attention_scale_2.0 12.22
|
| 600 |
+
ngram_lm_scale_1.5_attention_scale_0.6 12.24
|
| 601 |
+
ngram_lm_scale_2.3_attention_scale_1.7 12.24
|
| 602 |
+
ngram_lm_scale_1.1_attention_scale_0.1 12.27
|
| 603 |
+
ngram_lm_scale_1.9_attention_scale_1.1 12.3
|
| 604 |
+
ngram_lm_scale_4.0_attention_scale_4.0 12.31
|
| 605 |
+
ngram_lm_scale_2.2_attention_scale_1.5 12.32
|
| 606 |
+
ngram_lm_scale_2.5_attention_scale_1.9 12.35
|
| 607 |
+
ngram_lm_scale_1.1_attention_scale_0.08 12.36
|
| 608 |
+
ngram_lm_scale_2.0_attention_scale_1.2 12.37
|
| 609 |
+
ngram_lm_scale_1.3_attention_scale_0.3 12.4
|
| 610 |
+
ngram_lm_scale_2.1_attention_scale_1.3 12.43
|
| 611 |
+
ngram_lm_scale_3.0_attention_scale_2.5 12.46
|
| 612 |
+
ngram_lm_scale_1.1_attention_scale_0.05 12.51
|
| 613 |
+
ngram_lm_scale_1.9_attention_scale_1.0 12.52
|
| 614 |
+
ngram_lm_scale_2.3_attention_scale_1.5 12.53
|
| 615 |
+
ngram_lm_scale_1.5_attention_scale_0.5 12.54
|
| 616 |
+
ngram_lm_scale_2.0_attention_scale_1.1 12.58
|
| 617 |
+
ngram_lm_scale_5.0_attention_scale_5.0 12.62
|
| 618 |
+
ngram_lm_scale_2.1_attention_scale_1.2 12.63
|
| 619 |
+
ngram_lm_scale_2.5_attention_scale_1.7 12.64
|
| 620 |
+
ngram_lm_scale_1.7_attention_scale_0.7 12.68
|
| 621 |
+
ngram_lm_scale_2.2_attention_scale_1.3 12.68
|
| 622 |
+
ngram_lm_scale_1.1_attention_scale_0.01 12.72
|
| 623 |
+
ngram_lm_scale_3.0_attention_scale_2.3 12.72
|
| 624 |
+
ngram_lm_scale_1.9_attention_scale_0.9 12.78
|
| 625 |
+
ngram_lm_scale_1.2_attention_scale_0.1 12.79
|
| 626 |
+
ngram_lm_scale_2.0_attention_scale_1.0 12.82
|
| 627 |
+
ngram_lm_scale_2.1_attention_scale_1.1 12.86
|
| 628 |
+
ngram_lm_scale_3.0_attention_scale_2.2 12.87
|
| 629 |
+
ngram_lm_scale_1.2_attention_scale_0.08 12.88
|
| 630 |
+
ngram_lm_scale_2.2_attention_scale_1.2 12.92
|
| 631 |
+
ngram_lm_scale_2.3_attention_scale_1.3 12.97
|
| 632 |
+
ngram_lm_scale_1.7_attention_scale_0.6 12.98
|
| 633 |
+
ngram_lm_scale_3.0_attention_scale_2.1 13.03
|
| 634 |
+
ngram_lm_scale_2.5_attention_scale_1.5 13.04
|
| 635 |
+
ngram_lm_scale_1.2_attention_scale_0.05 13.05
|
| 636 |
+
ngram_lm_scale_2.0_attention_scale_0.9 13.11
|
| 637 |
+
ngram_lm_scale_2.1_attention_scale_1.0 13.17
|
| 638 |
+
ngram_lm_scale_2.2_attention_scale_1.1 13.2
|
| 639 |
+
ngram_lm_scale_3.0_attention_scale_2.0 13.2
|
| 640 |
+
ngram_lm_scale_2.3_attention_scale_1.2 13.24
|
| 641 |
+
ngram_lm_scale_1.2_attention_scale_0.01 13.27
|
| 642 |
+
ngram_lm_scale_1.3_attention_scale_0.1 13.3
|
| 643 |
+
ngram_lm_scale_1.5_attention_scale_0.3 13.32
|
| 644 |
+
ngram_lm_scale_1.7_attention_scale_0.5 13.33
|
| 645 |
+
ngram_lm_scale_1.3_attention_scale_0.08 13.4
|
| 646 |
+
ngram_lm_scale_4.0_attention_scale_3.0 13.41
|
| 647 |
+
ngram_lm_scale_1.9_attention_scale_0.7 13.42
|
| 648 |
+
ngram_lm_scale_3.0_attention_scale_1.9 13.42
|
| 649 |
+
ngram_lm_scale_2.1_attention_scale_0.9 13.45
|
| 650 |
+
ngram_lm_scale_2.2_attention_scale_1.0 13.46
|
| 651 |
+
ngram_lm_scale_2.3_attention_scale_1.1 13.47
|
| 652 |
+
ngram_lm_scale_2.5_attention_scale_1.3 13.53
|
| 653 |
+
ngram_lm_scale_1.3_attention_scale_0.05 13.56
|
| 654 |
+
ngram_lm_scale_5.0_attention_scale_4.0 13.57
|
| 655 |
+
ngram_lm_scale_2.0_attention_scale_0.7 13.73
|
| 656 |
+
ngram_lm_scale_2.2_attention_scale_0.9 13.74
|
| 657 |
+
ngram_lm_scale_1.9_attention_scale_0.6 13.75
|
| 658 |
+
ngram_lm_scale_2.3_attention_scale_1.0 13.75
|
| 659 |
+
ngram_lm_scale_2.5_attention_scale_1.2 13.78
|
| 660 |
+
ngram_lm_scale_1.3_attention_scale_0.01 13.81
|
| 661 |
+
ngram_lm_scale_3.0_attention_scale_1.7 13.84
|
| 662 |
+
ngram_lm_scale_2.5_attention_scale_1.1 14.05
|
| 663 |
+
ngram_lm_scale_2.1_attention_scale_0.7 14.07
|
| 664 |
+
ngram_lm_scale_2.3_attention_scale_0.9 14.07
|
| 665 |
+
ngram_lm_scale_2.0_attention_scale_0.6 14.1
|
| 666 |
+
ngram_lm_scale_1.9_attention_scale_0.5 14.14
|
| 667 |
+
ngram_lm_scale_1.7_attention_scale_0.3 14.18
|
| 668 |
+
ngram_lm_scale_4.0_attention_scale_2.5 14.2
|
| 669 |
+
ngram_lm_scale_3.0_attention_scale_1.5 14.28
|
| 670 |
+
ngram_lm_scale_1.5_attention_scale_0.1 14.3
|
| 671 |
+
ngram_lm_scale_2.5_attention_scale_1.0 14.35
|
| 672 |
+
ngram_lm_scale_1.5_attention_scale_0.08 14.41
|
| 673 |
+
ngram_lm_scale_2.2_attention_scale_0.7 14.42
|
| 674 |
+
ngram_lm_scale_2.1_attention_scale_0.6 14.47
|
| 675 |
+
ngram_lm_scale_2.0_attention_scale_0.5 14.51
|
| 676 |
+
ngram_lm_scale_4.0_attention_scale_2.3 14.56
|
| 677 |
+
ngram_lm_scale_1.5_attention_scale_0.05 14.57
|
| 678 |
+
ngram_lm_scale_2.5_attention_scale_0.9 14.66
|
| 679 |
+
ngram_lm_scale_2.3_attention_scale_0.7 14.72
|
| 680 |
+
ngram_lm_scale_4.0_attention_scale_2.2 14.75
|
| 681 |
+
ngram_lm_scale_2.2_attention_scale_0.6 14.76
|
| 682 |
+
ngram_lm_scale_3.0_attention_scale_1.3 14.76
|
| 683 |
+
ngram_lm_scale_2.1_attention_scale_0.5 14.8
|
| 684 |
+
ngram_lm_scale_1.5_attention_scale_0.01 14.82
|
| 685 |
+
ngram_lm_scale_5.0_attention_scale_3.0 14.84
|
| 686 |
+
ngram_lm_scale_4.0_attention_scale_2.1 14.9
|
| 687 |
+
ngram_lm_scale_1.9_attention_scale_0.3 14.93
|
| 688 |
+
ngram_lm_scale_3.0_attention_scale_1.2 14.98
|
| 689 |
+
ngram_lm_scale_2.3_attention_scale_0.6 15.04
|
| 690 |
+
ngram_lm_scale_4.0_attention_scale_2.0 15.07
|
| 691 |
+
ngram_lm_scale_2.2_attention_scale_0.5 15.13
|
| 692 |
+
ngram_lm_scale_1.7_attention_scale_0.1 15.2
|
| 693 |
+
ngram_lm_scale_3.0_attention_scale_1.1 15.24
|
| 694 |
+
ngram_lm_scale_4.0_attention_scale_1.9 15.25
|
| 695 |
+
ngram_lm_scale_2.5_attention_scale_0.7 15.26
|
| 696 |
+
ngram_lm_scale_1.7_attention_scale_0.08 15.3
|
| 697 |
+
ngram_lm_scale_2.0_attention_scale_0.3 15.31
|
| 698 |
+
ngram_lm_scale_2.3_attention_scale_0.5 15.41
|
| 699 |
+
ngram_lm_scale_1.7_attention_scale_0.05 15.48
|
| 700 |
+
ngram_lm_scale_3.0_attention_scale_1.0 15.54
|
| 701 |
+
ngram_lm_scale_2.5_attention_scale_0.6 15.59
|
| 702 |
+
ngram_lm_scale_5.0_attention_scale_2.5 15.61
|
| 703 |
+
ngram_lm_scale_2.1_attention_scale_0.3 15.62
|
| 704 |
+
ngram_lm_scale_4.0_attention_scale_1.7 15.66
|
| 705 |
+
ngram_lm_scale_1.7_attention_scale_0.01 15.73
|
| 706 |
+
ngram_lm_scale_3.0_attention_scale_0.9 15.8
|
| 707 |
+
ngram_lm_scale_5.0_attention_scale_2.3 15.9
|
| 708 |
+
ngram_lm_scale_1.9_attention_scale_0.1 15.91
|
| 709 |
+
ngram_lm_scale_2.2_attention_scale_0.3 15.93
|
| 710 |
+
ngram_lm_scale_2.5_attention_scale_0.5 15.96
|
| 711 |
+
ngram_lm_scale_1.9_attention_scale_0.08 16.02
|
| 712 |
+
ngram_lm_scale_4.0_attention_scale_1.5 16.04
|
| 713 |
+
ngram_lm_scale_5.0_attention_scale_2.2 16.04
|
| 714 |
+
ngram_lm_scale_1.9_attention_scale_0.05 16.18
|
| 715 |
+
ngram_lm_scale_5.0_attention_scale_2.1 16.2
|
| 716 |
+
ngram_lm_scale_2.3_attention_scale_0.3 16.21
|
| 717 |
+
ngram_lm_scale_2.0_attention_scale_0.1 16.25
|
| 718 |
+
ngram_lm_scale_3.0_attention_scale_0.7 16.34
|
| 719 |
+
ngram_lm_scale_2.0_attention_scale_0.08 16.35
|
| 720 |
+
ngram_lm_scale_5.0_attention_scale_2.0 16.37
|
| 721 |
+
ngram_lm_scale_1.9_attention_scale_0.01 16.42
|
| 722 |
+
ngram_lm_scale_4.0_attention_scale_1.3 16.45
|
| 723 |
+
ngram_lm_scale_2.0_attention_scale_0.05 16.5
|
| 724 |
+
ngram_lm_scale_5.0_attention_scale_1.9 16.52
|
| 725 |
+
ngram_lm_scale_2.1_attention_scale_0.1 16.55
|
| 726 |
+
ngram_lm_scale_4.0_attention_scale_1.2 16.62
|
| 727 |
+
ngram_lm_scale_2.1_attention_scale_0.08 16.64
|
| 728 |
+
ngram_lm_scale_3.0_attention_scale_0.6 16.64
|
| 729 |
+
ngram_lm_scale_2.5_attention_scale_0.3 16.67
|
| 730 |
+
ngram_lm_scale_2.0_attention_scale_0.01 16.71
|
| 731 |
+
ngram_lm_scale_2.1_attention_scale_0.05 16.77
|
| 732 |
+
ngram_lm_scale_2.2_attention_scale_0.1 16.8
|
| 733 |
+
ngram_lm_scale_5.0_attention_scale_1.7 16.82
|
| 734 |
+
ngram_lm_scale_4.0_attention_scale_1.1 16.84
|
| 735 |
+
ngram_lm_scale_2.2_attention_scale_0.08 16.89
|
| 736 |
+
ngram_lm_scale_3.0_attention_scale_0.5 16.95
|
| 737 |
+
ngram_lm_scale_2.1_attention_scale_0.01 16.99
|
| 738 |
+
ngram_lm_scale_2.2_attention_scale_0.05 17.02
|
| 739 |
+
ngram_lm_scale_2.3_attention_scale_0.1 17.02
|
| 740 |
+
ngram_lm_scale_4.0_attention_scale_1.0 17.07
|
| 741 |
+
ngram_lm_scale_2.3_attention_scale_0.08 17.09
|
| 742 |
+
ngram_lm_scale_5.0_attention_scale_1.5 17.16
|
| 743 |
+
ngram_lm_scale_2.2_attention_scale_0.01 17.18
|
| 744 |
+
ngram_lm_scale_2.3_attention_scale_0.05 17.2
|
| 745 |
+
ngram_lm_scale_4.0_attention_scale_0.9 17.24
|
| 746 |
+
ngram_lm_scale_2.3_attention_scale_0.01 17.38
|
| 747 |
+
ngram_lm_scale_2.5_attention_scale_0.1 17.4
|
| 748 |
+
ngram_lm_scale_5.0_attention_scale_1.3 17.45
|
| 749 |
+
ngram_lm_scale_2.5_attention_scale_0.08 17.47
|
| 750 |
+
ngram_lm_scale_3.0_attention_scale_0.3 17.53
|
| 751 |
+
ngram_lm_scale_2.5_attention_scale_0.05 17.58
|
| 752 |
+
ngram_lm_scale_5.0_attention_scale_1.2 17.63
|
| 753 |
+
ngram_lm_scale_2.5_attention_scale_0.01 17.7
|
| 754 |
+
ngram_lm_scale_4.0_attention_scale_0.7 17.7
|
| 755 |
+
ngram_lm_scale_5.0_attention_scale_1.1 17.8
|
| 756 |
+
ngram_lm_scale_4.0_attention_scale_0.6 17.89
|
| 757 |
+
ngram_lm_scale_5.0_attention_scale_1.0 17.94
|
| 758 |
+
ngram_lm_scale_3.0_attention_scale_0.1 18.09
|
| 759 |
+
ngram_lm_scale_4.0_attention_scale_0.5 18.09
|
| 760 |
+
ngram_lm_scale_5.0_attention_scale_0.9 18.09
|
| 761 |
+
ngram_lm_scale_3.0_attention_scale_0.08 18.14
|
| 762 |
+
ngram_lm_scale_3.0_attention_scale_0.05 18.21
|
| 763 |
+
ngram_lm_scale_3.0_attention_scale_0.01 18.31
|
| 764 |
+
ngram_lm_scale_5.0_attention_scale_0.7 18.41
|
| 765 |
+
ngram_lm_scale_4.0_attention_scale_0.3 18.49
|
| 766 |
+
ngram_lm_scale_5.0_attention_scale_0.6 18.57
|
| 767 |
+
ngram_lm_scale_5.0_attention_scale_0.5 18.71
|
| 768 |
+
ngram_lm_scale_4.0_attention_scale_0.1 18.85
|
| 769 |
+
ngram_lm_scale_4.0_attention_scale_0.08 18.88
|
| 770 |
+
ngram_lm_scale_4.0_attention_scale_0.05 18.95
|
| 771 |
+
ngram_lm_scale_5.0_attention_scale_0.3 19.01
|
| 772 |
+
ngram_lm_scale_4.0_attention_scale_0.01 19.02
|
| 773 |
+
ngram_lm_scale_5.0_attention_scale_0.1 19.3
|
| 774 |
+
ngram_lm_scale_5.0_attention_scale_0.08 19.32
|
| 775 |
+
ngram_lm_scale_5.0_attention_scale_0.05 19.37
|
| 776 |
+
ngram_lm_scale_5.0_attention_scale_0.01 19.43
|
| 777 |
+
|
| 778 |
+
2022-04-08 23:20:49,165 INFO [decode.py:730] Done!
|